统计软件的容差区间与模型错配下的鲁棒性

Q2 Mathematics
Kyung Serk Cho, Hon Keung Tony Ng
{"title":"统计软件的容差区间与模型错配下的鲁棒性","authors":"Kyung Serk Cho, Hon Keung Tony Ng","doi":"10.1186/s40488-021-00123-2","DOIUrl":null,"url":null,"abstract":"A tolerance interval is a statistical interval that covers at least 100ρ% of the population of interest with a 100(1−α)% confidence, where ρ and α are pre-specified values in (0, 1). In many scientific fields, such as pharmaceutical sciences, manufacturing processes, clinical sciences, and environmental sciences, tolerance intervals are used for statistical inference and quality control. Despite the usefulness of tolerance intervals, the procedures to compute tolerance intervals are not commonly implemented in statistical software packages. This paper aims to provide a comparative study of the computational procedures for tolerance intervals in some commonly used statistical software packages including JMP, Minitab, NCSS, Python, R, and SAS. On the other hand, we also investigate the effect of misspecifying the underlying probability model on the performance of tolerance intervals. We study the performance of tolerance intervals when the assumed distribution is the same as the true underlying distribution and when the assumed distribution is different from the true distribution via a Monte Carlo simulation study. We also propose a robust model selection approach to obtain tolerance intervals that are relatively insensitive to the model misspecification. We show that the proposed robust model selection approach performs well when the underlying distribution is unknown but candidate distributions are available.","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Tolerance intervals in statistical software and robustness under model misspecification\",\"authors\":\"Kyung Serk Cho, Hon Keung Tony Ng\",\"doi\":\"10.1186/s40488-021-00123-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A tolerance interval is a statistical interval that covers at least 100ρ% of the population of interest with a 100(1−α)% confidence, where ρ and α are pre-specified values in (0, 1). In many scientific fields, such as pharmaceutical sciences, manufacturing processes, clinical sciences, and environmental sciences, tolerance intervals are used for statistical inference and quality control. Despite the usefulness of tolerance intervals, the procedures to compute tolerance intervals are not commonly implemented in statistical software packages. This paper aims to provide a comparative study of the computational procedures for tolerance intervals in some commonly used statistical software packages including JMP, Minitab, NCSS, Python, R, and SAS. On the other hand, we also investigate the effect of misspecifying the underlying probability model on the performance of tolerance intervals. We study the performance of tolerance intervals when the assumed distribution is the same as the true underlying distribution and when the assumed distribution is different from the true distribution via a Monte Carlo simulation study. We also propose a robust model selection approach to obtain tolerance intervals that are relatively insensitive to the model misspecification. We show that the proposed robust model selection approach performs well when the underlying distribution is unknown but candidate distributions are available.\",\"PeriodicalId\":52216,\"journal\":{\"name\":\"Journal of Statistical Distributions and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Distributions and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40488-021-00123-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Distributions and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40488-021-00123-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

容差区间是一个统计区间,它以100(1−α)%的置信度覆盖至少100ρ%的感兴趣总体,其中ρ和α是(0,1)中预先指定的值。在许多科学领域,如制药科学,制造工艺,临床科学和环境科学,容差区间用于统计推断和质量控制。尽管公差区间很有用,但是计算公差区间的过程在统计软件包中通常没有实现。比较研究了JMP、Minitab、NCSS、Python、R、SAS等常用统计软件包中公差区间的计算过程。另一方面,我们还研究了错误指定潜在概率模型对公差区间性能的影响。通过蒙特卡罗模拟研究了假设分布与真实底层分布相同以及假设分布与真实底层分布不同时容差区间的性能。我们还提出了一种鲁棒模型选择方法,以获得对模型错误规范相对不敏感的公差区间。我们表明,当潜在分布未知但候选分布可用时,所提出的鲁棒模型选择方法表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tolerance intervals in statistical software and robustness under model misspecification
A tolerance interval is a statistical interval that covers at least 100ρ% of the population of interest with a 100(1−α)% confidence, where ρ and α are pre-specified values in (0, 1). In many scientific fields, such as pharmaceutical sciences, manufacturing processes, clinical sciences, and environmental sciences, tolerance intervals are used for statistical inference and quality control. Despite the usefulness of tolerance intervals, the procedures to compute tolerance intervals are not commonly implemented in statistical software packages. This paper aims to provide a comparative study of the computational procedures for tolerance intervals in some commonly used statistical software packages including JMP, Minitab, NCSS, Python, R, and SAS. On the other hand, we also investigate the effect of misspecifying the underlying probability model on the performance of tolerance intervals. We study the performance of tolerance intervals when the assumed distribution is the same as the true underlying distribution and when the assumed distribution is different from the true distribution via a Monte Carlo simulation study. We also propose a robust model selection approach to obtain tolerance intervals that are relatively insensitive to the model misspecification. We show that the proposed robust model selection approach performs well when the underlying distribution is unknown but candidate distributions are available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Distributions and Applications
Journal of Statistical Distributions and Applications Decision Sciences-Statistics, Probability and Uncertainty
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信