变形几何二次型危险率分布:发展、性质、特征及应用

Q2 Mathematics
Fiaz Ahmad Bhatti, G. G. Hamedani, Mustafa Ç. Korkmaz, Munir Ahmad
{"title":"变形几何二次型危险率分布:发展、性质、特征及应用","authors":"Fiaz Ahmad Bhatti, G. G. Hamedani, Mustafa Ç. Korkmaz, Munir Ahmad","doi":"10.1186/s40488-018-0085-8","DOIUrl":null,"url":null,"abstract":"We propose a five parameter transmuted geometric quadratic hazard rate (TG-QHR) distribution derived from mixture of quadratic hazard rate (QHR), geometric and transmuted distributions via the application of transmuted geometric-G (TG-G) family of Afify et al.(Pak J Statist 32(2), 139-160, 2016). Some of its structural properties are studied. Moments, incomplete moments, inequality measures, residual life functions and some other properties are theoretically taken up. The TG-QHR distribution is characterized via different techniques. Estimates of the parameters for TG-QHR distribution are obtained using maximum likelihood method. The simulation studies are performed on the basis of graphical results to illustrate the performance of maximum likelihood estimates (MLEs) of the TG-QHR distribution. The significance and flexibility of TG-QHR distribution is tested through different measures by application to two real data sets.","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The transmuted geometric-quadratic hazard rate distribution: development, properties, characterizations and applications\",\"authors\":\"Fiaz Ahmad Bhatti, G. G. Hamedani, Mustafa Ç. Korkmaz, Munir Ahmad\",\"doi\":\"10.1186/s40488-018-0085-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a five parameter transmuted geometric quadratic hazard rate (TG-QHR) distribution derived from mixture of quadratic hazard rate (QHR), geometric and transmuted distributions via the application of transmuted geometric-G (TG-G) family of Afify et al.(Pak J Statist 32(2), 139-160, 2016). Some of its structural properties are studied. Moments, incomplete moments, inequality measures, residual life functions and some other properties are theoretically taken up. The TG-QHR distribution is characterized via different techniques. Estimates of the parameters for TG-QHR distribution are obtained using maximum likelihood method. The simulation studies are performed on the basis of graphical results to illustrate the performance of maximum likelihood estimates (MLEs) of the TG-QHR distribution. The significance and flexibility of TG-QHR distribution is tested through different measures by application to two real data sets.\",\"PeriodicalId\":52216,\"journal\":{\"name\":\"Journal of Statistical Distributions and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Distributions and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40488-018-0085-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Distributions and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40488-018-0085-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

摘要

我们通过应用Afify等人的transmeded geometric- g (TG-G)族,提出了由二次风险率(QHR)、几何和转化分布混合而成的五参数转化几何二次风险率(TG-QHR)分布(Pak J Statist 32(2), 139-160, 2016)。研究了它的一些结构特性。从理论上讨论了矩、不完全矩、不等式测度、剩余生命函数和其他一些性质。TG-QHR分布是通过不同的技术表征的。利用极大似然法对TG-QHR分布参数进行估计。模拟研究是在图形结果的基础上进行的,以说明TG-QHR分布的最大似然估计(MLEs)的性能。通过对两个实际数据集的应用,通过不同的度量来检验TG-QHR分布的重要性和灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The transmuted geometric-quadratic hazard rate distribution: development, properties, characterizations and applications
We propose a five parameter transmuted geometric quadratic hazard rate (TG-QHR) distribution derived from mixture of quadratic hazard rate (QHR), geometric and transmuted distributions via the application of transmuted geometric-G (TG-G) family of Afify et al.(Pak J Statist 32(2), 139-160, 2016). Some of its structural properties are studied. Moments, incomplete moments, inequality measures, residual life functions and some other properties are theoretically taken up. The TG-QHR distribution is characterized via different techniques. Estimates of the parameters for TG-QHR distribution are obtained using maximum likelihood method. The simulation studies are performed on the basis of graphical results to illustrate the performance of maximum likelihood estimates (MLEs) of the TG-QHR distribution. The significance and flexibility of TG-QHR distribution is tested through different measures by application to two real data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Distributions and Applications
Journal of Statistical Distributions and Applications Decision Sciences-Statistics, Probability and Uncertainty
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信