多项分布类别中比例比率的均值和方差

Q2 Mathematics
Frantisek Duris, Juraj Gazdarica, Iveta Gazdaricova, Lucia Strieskova, Jaroslav Budis, Jan Turna, Tomas Szemes
{"title":"多项分布类别中比例比率的均值和方差","authors":"Frantisek Duris, Juraj Gazdarica, Iveta Gazdaricova, Lucia Strieskova, Jaroslav Budis, Jan Turna, Tomas Szemes","doi":"10.1186/s40488-018-0083-x","DOIUrl":null,"url":null,"abstract":"Ratio distribution is a probability distribution representing the ratio of two random variables, each usually having a known distribution. Currently, there are results when the random variables in the ratio follow (not necessarily the same) Gaussian, Cauchy, binomial or uniform distributions. In this paper we consider a case, where the random variables in the ratio are joint binomial components of a multinomial distribution. We derived formulae for mean and variance of this ratio distribution using a simple Taylor-series approach and also a more complex approach which uses a slight modification of the original ratio. We showed that the more complex approach yields better results with simulated data. The presented results can be directly applied in the computation of confidence intervals for ratios of multinomial proportions. AMS Subject Classification: 62E20","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Mean and variance of ratios of proportions from categories of a multinomial distribution\",\"authors\":\"Frantisek Duris, Juraj Gazdarica, Iveta Gazdaricova, Lucia Strieskova, Jaroslav Budis, Jan Turna, Tomas Szemes\",\"doi\":\"10.1186/s40488-018-0083-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ratio distribution is a probability distribution representing the ratio of two random variables, each usually having a known distribution. Currently, there are results when the random variables in the ratio follow (not necessarily the same) Gaussian, Cauchy, binomial or uniform distributions. In this paper we consider a case, where the random variables in the ratio are joint binomial components of a multinomial distribution. We derived formulae for mean and variance of this ratio distribution using a simple Taylor-series approach and also a more complex approach which uses a slight modification of the original ratio. We showed that the more complex approach yields better results with simulated data. The presented results can be directly applied in the computation of confidence intervals for ratios of multinomial proportions. AMS Subject Classification: 62E20\",\"PeriodicalId\":52216,\"journal\":{\"name\":\"Journal of Statistical Distributions and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Distributions and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40488-018-0083-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Distributions and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40488-018-0083-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 14

摘要

比率分布是一种概率分布,表示两个随机变量的比率,每个随机变量通常有一个已知的分布。目前,当比率中的随机变量遵循(不一定相同)高斯分布,柯西分布,二项分布或均匀分布时,有结果。本文考虑一种情况,其中比率中的随机变量是多项分布的联合二项式分量。我们使用简单的泰勒级数方法和一种更复杂的方法推导了该比率分布的均值和方差公式,该方法对原始比率进行了轻微的修改。我们表明,更复杂的方法产生更好的结果与模拟数据。所得结果可直接应用于多项式比例比置信区间的计算。AMS学科分类:62E20
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mean and variance of ratios of proportions from categories of a multinomial distribution
Ratio distribution is a probability distribution representing the ratio of two random variables, each usually having a known distribution. Currently, there are results when the random variables in the ratio follow (not necessarily the same) Gaussian, Cauchy, binomial or uniform distributions. In this paper we consider a case, where the random variables in the ratio are joint binomial components of a multinomial distribution. We derived formulae for mean and variance of this ratio distribution using a simple Taylor-series approach and also a more complex approach which uses a slight modification of the original ratio. We showed that the more complex approach yields better results with simulated data. The presented results can be directly applied in the computation of confidence intervals for ratios of multinomial proportions. AMS Subject Classification: 62E20
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Distributions and Applications
Journal of Statistical Distributions and Applications Decision Sciences-Statistics, Probability and Uncertainty
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信