关于泊松-特威迪混合物

Q2 Mathematics
Vladimir V. Vinogradov, Richard B. Paris
{"title":"关于泊松-特威迪混合物","authors":"Vladimir V. Vinogradov, Richard B. Paris","doi":"10.1186/s40488-017-0068-1","DOIUrl":null,"url":null,"abstract":"Poisson-Tweedie mixtures are the Poisson mixtures for which the mixing measure is generated by those members of the family of Tweedie distributions whose support is non-negative. This class of non-negative integer-valued distributions is comprised of Neyman type A, back-shifted negative binomial, compound Poisson-negative binomial, discrete stable and exponentially tilted discrete stable laws. For a specific value of the “power” parameter associated with the corresponding Tweedie distributions, such mixtures comprise an additive exponential dispersion model. We derive closed-form expressions for the related variance functions in terms of the exponential tilting invariants and particular special functions. We compare specific Poisson-Tweedie models with the corresponding Hinde-Demétrio exponential dispersion models which possess a comparable unit variance function. We construct numerous local approximations for specific subclasses of Poisson-Tweedie mixtures and identify Lévy measure for all the members of this three-parameter family.","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":"15 3‐4","pages":"1-23"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On Poisson–Tweedie mixtures\",\"authors\":\"Vladimir V. Vinogradov, Richard B. Paris\",\"doi\":\"10.1186/s40488-017-0068-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Poisson-Tweedie mixtures are the Poisson mixtures for which the mixing measure is generated by those members of the family of Tweedie distributions whose support is non-negative. This class of non-negative integer-valued distributions is comprised of Neyman type A, back-shifted negative binomial, compound Poisson-negative binomial, discrete stable and exponentially tilted discrete stable laws. For a specific value of the “power” parameter associated with the corresponding Tweedie distributions, such mixtures comprise an additive exponential dispersion model. We derive closed-form expressions for the related variance functions in terms of the exponential tilting invariants and particular special functions. We compare specific Poisson-Tweedie models with the corresponding Hinde-Demétrio exponential dispersion models which possess a comparable unit variance function. We construct numerous local approximations for specific subclasses of Poisson-Tweedie mixtures and identify Lévy measure for all the members of this three-parameter family.\",\"PeriodicalId\":52216,\"journal\":{\"name\":\"Journal of Statistical Distributions and Applications\",\"volume\":\"15 3‐4\",\"pages\":\"1-23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Distributions and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40488-017-0068-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Distributions and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40488-017-0068-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

泊松-特威迪混合是泊松混合,其混合测度是由特威迪分布族的成员产生的,其支持度是非负的。这类非负整数值分布由Neyman A型、后移负二项式、复合泊松负二项式、离散稳定律和指数倾斜离散稳定律组成。对于与相应的Tweedie分布相关联的“功率”参数的特定值,这种混合物包括可加性指数色散模型。我们用指数倾斜不变量和特定的特殊函数导出了相关方差函数的封闭表达式。我们比较了特定的Poisson-Tweedie模型和相应的hinde - dem指数色散模型,它们具有可比的单位方差函数。我们对泊松- tweedie混合的特定子类构造了许多局部逼近,并确定了这三参数族的所有成员的lsamvy测度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Poisson–Tweedie mixtures
Poisson-Tweedie mixtures are the Poisson mixtures for which the mixing measure is generated by those members of the family of Tweedie distributions whose support is non-negative. This class of non-negative integer-valued distributions is comprised of Neyman type A, back-shifted negative binomial, compound Poisson-negative binomial, discrete stable and exponentially tilted discrete stable laws. For a specific value of the “power” parameter associated with the corresponding Tweedie distributions, such mixtures comprise an additive exponential dispersion model. We derive closed-form expressions for the related variance functions in terms of the exponential tilting invariants and particular special functions. We compare specific Poisson-Tweedie models with the corresponding Hinde-Demétrio exponential dispersion models which possess a comparable unit variance function. We construct numerous local approximations for specific subclasses of Poisson-Tweedie mixtures and identify Lévy measure for all the members of this three-parameter family.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Distributions and Applications
Journal of Statistical Distributions and Applications Decision Sciences-Statistics, Probability and Uncertainty
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信