{"title":"关于泊松-特威迪混合物","authors":"Vladimir V. Vinogradov, Richard B. Paris","doi":"10.1186/s40488-017-0068-1","DOIUrl":null,"url":null,"abstract":"Poisson-Tweedie mixtures are the Poisson mixtures for which the mixing measure is generated by those members of the family of Tweedie distributions whose support is non-negative. This class of non-negative integer-valued distributions is comprised of Neyman type A, back-shifted negative binomial, compound Poisson-negative binomial, discrete stable and exponentially tilted discrete stable laws. For a specific value of the “power” parameter associated with the corresponding Tweedie distributions, such mixtures comprise an additive exponential dispersion model. We derive closed-form expressions for the related variance functions in terms of the exponential tilting invariants and particular special functions. We compare specific Poisson-Tweedie models with the corresponding Hinde-Demétrio exponential dispersion models which possess a comparable unit variance function. We construct numerous local approximations for specific subclasses of Poisson-Tweedie mixtures and identify Lévy measure for all the members of this three-parameter family.","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":"15 3‐4","pages":"1-23"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On Poisson–Tweedie mixtures\",\"authors\":\"Vladimir V. Vinogradov, Richard B. Paris\",\"doi\":\"10.1186/s40488-017-0068-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Poisson-Tweedie mixtures are the Poisson mixtures for which the mixing measure is generated by those members of the family of Tweedie distributions whose support is non-negative. This class of non-negative integer-valued distributions is comprised of Neyman type A, back-shifted negative binomial, compound Poisson-negative binomial, discrete stable and exponentially tilted discrete stable laws. For a specific value of the “power” parameter associated with the corresponding Tweedie distributions, such mixtures comprise an additive exponential dispersion model. We derive closed-form expressions for the related variance functions in terms of the exponential tilting invariants and particular special functions. We compare specific Poisson-Tweedie models with the corresponding Hinde-Demétrio exponential dispersion models which possess a comparable unit variance function. We construct numerous local approximations for specific subclasses of Poisson-Tweedie mixtures and identify Lévy measure for all the members of this three-parameter family.\",\"PeriodicalId\":52216,\"journal\":{\"name\":\"Journal of Statistical Distributions and Applications\",\"volume\":\"15 3‐4\",\"pages\":\"1-23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Distributions and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40488-017-0068-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Distributions and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40488-017-0068-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Poisson-Tweedie mixtures are the Poisson mixtures for which the mixing measure is generated by those members of the family of Tweedie distributions whose support is non-negative. This class of non-negative integer-valued distributions is comprised of Neyman type A, back-shifted negative binomial, compound Poisson-negative binomial, discrete stable and exponentially tilted discrete stable laws. For a specific value of the “power” parameter associated with the corresponding Tweedie distributions, such mixtures comprise an additive exponential dispersion model. We derive closed-form expressions for the related variance functions in terms of the exponential tilting invariants and particular special functions. We compare specific Poisson-Tweedie models with the corresponding Hinde-Demétrio exponential dispersion models which possess a comparable unit variance function. We construct numerous local approximations for specific subclasses of Poisson-Tweedie mixtures and identify Lévy measure for all the members of this three-parameter family.