Cheng-Yang Zhang, Pu Wang, Li-Hua Bai, Zhi-Hua Guo, Huai-Xin Cao
{"title":"量子态的通道相干性","authors":"Cheng-Yang Zhang, Pu Wang, Li-Hua Bai, Zhi-Hua Guo, Huai-Xin Cao","doi":"10.1142/s0219749922500149","DOIUrl":null,"url":null,"abstract":"<p>Quantum coherence is one of the most fundamental and striking features in quantum physics. Considered the standard coherence (SC), the partial coherence (PC) and the block coherence (BC) as variance of quantum states under some quantum channels (QCs) <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Φ</mi></math></span><span></span>, we propose the concept of channel-based coherence of quantum states, called <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Φ</mi></math></span><span></span>-coherence for short, which contains the SC, PC and BC, but does not contain the positive operator-valued measure (POVM)-based coherence. By our definition, a state <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>ρ</mi></math></span><span></span> is said to be <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Φ</mi></math></span><span></span>-incoherent if it is a fixed point of a QC <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Φ</mi></math></span><span></span>, otherwise, it is said to be <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Φ</mi></math></span><span></span>-coherent. First, we find the set <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"cal\">ℐ</mi><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Φ</mi><mo stretchy=\"false\">)</mo></math></span><span></span> of all <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Φ</mi></math></span><span></span>-incoherent states for some given channels <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Φ</mi></math></span><span></span> and prove that the set <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"cal\">ℐ</mi><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Φ</mi><mo stretchy=\"false\">)</mo></math></span><span></span> forms a nonempty compact convex set for any channel <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Φ</mi></math></span><span></span>. Second, we define <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Φ</mi></math></span><span></span>-incoherent operations (<span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Φ</mi></math></span><span></span>-IOs) and prove that the set of all <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Φ</mi></math></span><span></span>-IOs is a nonempty convex set. We also establish some characterizations of a <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Φ</mi></math></span><span></span>-IO in terms of its Kraus operators. Lastly, we discuss the problem of quantifying <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Φ</mi></math></span><span></span>-coherence and prove some related properties.</p>","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Channel-based coherence of quantum states\",\"authors\":\"Cheng-Yang Zhang, Pu Wang, Li-Hua Bai, Zhi-Hua Guo, Huai-Xin Cao\",\"doi\":\"10.1142/s0219749922500149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quantum coherence is one of the most fundamental and striking features in quantum physics. Considered the standard coherence (SC), the partial coherence (PC) and the block coherence (BC) as variance of quantum states under some quantum channels (QCs) <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"normal\\\">Φ</mi></math></span><span></span>, we propose the concept of channel-based coherence of quantum states, called <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"normal\\\">Φ</mi></math></span><span></span>-coherence for short, which contains the SC, PC and BC, but does not contain the positive operator-valued measure (POVM)-based coherence. By our definition, a state <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ρ</mi></math></span><span></span> is said to be <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"normal\\\">Φ</mi></math></span><span></span>-incoherent if it is a fixed point of a QC <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"normal\\\">Φ</mi></math></span><span></span>, otherwise, it is said to be <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"normal\\\">Φ</mi></math></span><span></span>-coherent. First, we find the set <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"cal\\\">ℐ</mi><mo stretchy=\\\"false\\\">(</mo><mi mathvariant=\\\"normal\\\">Φ</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> of all <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"normal\\\">Φ</mi></math></span><span></span>-incoherent states for some given channels <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"normal\\\">Φ</mi></math></span><span></span> and prove that the set <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"cal\\\">ℐ</mi><mo stretchy=\\\"false\\\">(</mo><mi mathvariant=\\\"normal\\\">Φ</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> forms a nonempty compact convex set for any channel <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"normal\\\">Φ</mi></math></span><span></span>. Second, we define <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"normal\\\">Φ</mi></math></span><span></span>-incoherent operations (<span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"normal\\\">Φ</mi></math></span><span></span>-IOs) and prove that the set of all <span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"normal\\\">Φ</mi></math></span><span></span>-IOs is a nonempty convex set. We also establish some characterizations of a <span><math altimg=\\\"eq-00015.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"normal\\\">Φ</mi></math></span><span></span>-IO in terms of its Kraus operators. Lastly, we discuss the problem of quantifying <span><math altimg=\\\"eq-00016.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"normal\\\">Φ</mi></math></span><span></span>-coherence and prove some related properties.</p>\",\"PeriodicalId\":51058,\"journal\":{\"name\":\"International Journal of Quantum Information\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219749922500149\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0219749922500149","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Quantum coherence is one of the most fundamental and striking features in quantum physics. Considered the standard coherence (SC), the partial coherence (PC) and the block coherence (BC) as variance of quantum states under some quantum channels (QCs) , we propose the concept of channel-based coherence of quantum states, called -coherence for short, which contains the SC, PC and BC, but does not contain the positive operator-valued measure (POVM)-based coherence. By our definition, a state is said to be -incoherent if it is a fixed point of a QC , otherwise, it is said to be -coherent. First, we find the set of all -incoherent states for some given channels and prove that the set forms a nonempty compact convex set for any channel . Second, we define -incoherent operations (-IOs) and prove that the set of all -IOs is a nonempty convex set. We also establish some characterizations of a -IO in terms of its Kraus operators. Lastly, we discuss the problem of quantifying -coherence and prove some related properties.
期刊介绍:
The International Journal of Quantum Information (IJQI) provides a forum for the interdisciplinary field of Quantum Information Science. In particular, we welcome contributions in these areas of experimental and theoretical research:
Quantum Cryptography
Quantum Computation
Quantum Communication
Fundamentals of Quantum Mechanics
Authors are welcome to submit quality research and review papers as well as short correspondences in both theoretical and experimental areas. Submitted articles will be refereed prior to acceptance for publication in the Journal.