Fukaya $A_\infty$ -与Lefschetz纤维相关的结构。3。

IF 1.3 1区 数学 Q1 MATHEMATICS
Paul Seidel
{"title":"Fukaya $A_\\infty$ -与Lefschetz纤维相关的结构。3。","authors":"Paul Seidel","doi":"10.4310/jdg/1615487005","DOIUrl":null,"url":null,"abstract":"Floer cohomology groups are usually defined over a field of formal functions (a Novikov field). Under certain assumptions, one can equip them with connections, which means operations of differentiation with respect to the Novikov variable. This allows one to write differential equations for Floer cohomology classes. Here, we apply that idea to symplectic cohomology groups associated to Lefschetz fibrations, and establish a relation with enumerative geometry.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fukaya $A_\\\\infty$-structures associated to Lefschetz fibrations. III\",\"authors\":\"Paul Seidel\",\"doi\":\"10.4310/jdg/1615487005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Floer cohomology groups are usually defined over a field of formal functions (a Novikov field). Under certain assumptions, one can equip them with connections, which means operations of differentiation with respect to the Novikov variable. This allows one to write differential equations for Floer cohomology classes. Here, we apply that idea to symplectic cohomology groups associated to Lefschetz fibrations, and establish a relation with enumerative geometry.\",\"PeriodicalId\":15642,\"journal\":{\"name\":\"Journal of Differential Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jdg/1615487005\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1615487005","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

花上同调群通常定义在形式函数域(Novikov域)上。在一定的假设下,我们可以给它们配备连接,这意味着对诺维科夫变量的微分操作。这样就可以写出花上同调类的微分方程。在这里,我们将这一思想应用于与Lefschetz纤振相关的辛上同群,并建立了与枚举几何的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fukaya $A_\infty$-structures associated to Lefschetz fibrations. III
Floer cohomology groups are usually defined over a field of formal functions (a Novikov field). Under certain assumptions, one can equip them with connections, which means operations of differentiation with respect to the Novikov variable. This allows one to write differential equations for Floer cohomology classes. Here, we apply that idea to symplectic cohomology groups associated to Lefschetz fibrations, and establish a relation with enumerative geometry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信