K3表面上全纯盘与热带盘的对应定理

IF 1.3 1区 数学 Q1 MATHEMATICS
Yu-Shen Lin
{"title":"K3表面上全纯盘与热带盘的对应定理","authors":"Yu-Shen Lin","doi":"10.4310/jdg/1609902017","DOIUrl":null,"url":null,"abstract":"In this paper, we prove that the open Gromov–Witten invariants defined in [20] on K3 surfaces satisfy the Kontsevich–Soibelman wall-crossing formula. One hand, this gives a geometric interpretation of the slab functions in Gross–Siebert program. On the other hands, the open Gromov–Witten invariants coincide with the weighted counting of tropical discs. This is an analog of the corresponding theorem on toric varieties [26][27] but on compact Calabi–Yau surfaces.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2021-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correspondence theorem between holomorphic discs and tropical discs on K3 surfaces\",\"authors\":\"Yu-Shen Lin\",\"doi\":\"10.4310/jdg/1609902017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove that the open Gromov–Witten invariants defined in [20] on K3 surfaces satisfy the Kontsevich–Soibelman wall-crossing formula. One hand, this gives a geometric interpretation of the slab functions in Gross–Siebert program. On the other hands, the open Gromov–Witten invariants coincide with the weighted counting of tropical discs. This is an analog of the corresponding theorem on toric varieties [26][27] but on compact Calabi–Yau surfaces.\",\"PeriodicalId\":15642,\"journal\":{\"name\":\"Journal of Differential Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jdg/1609902017\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1609902017","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了在K3曲面上[20]定义的开放Gromov-Witten不变量满足kontsevic - soibelman过壁公式。一方面,给出了在Gross-Siebert程序中板坯函数的几何解释。另一方面,开放的Gromov-Witten不变量与热带圆盘的加权计数一致。这是环变[26][27]上对应定理的一个类比,但是是在紧化的Calabi-Yau曲面上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Correspondence theorem between holomorphic discs and tropical discs on K3 surfaces
In this paper, we prove that the open Gromov–Witten invariants defined in [20] on K3 surfaces satisfy the Kontsevich–Soibelman wall-crossing formula. One hand, this gives a geometric interpretation of the slab functions in Gross–Siebert program. On the other hands, the open Gromov–Witten invariants coincide with the weighted counting of tropical discs. This is an analog of the corresponding theorem on toric varieties [26][27] but on compact Calabi–Yau surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信