Francisco S. Marcondes, José João Almeida, Paulo Novais
{"title":"巨魔工厂探索性设计科学研究","authors":"Francisco S. Marcondes, José João Almeida, Paulo Novais","doi":"10.3233/ica-230720","DOIUrl":null,"url":null,"abstract":"Private and military troll factories (facilities used to spread rumours in online social media) are currently proliferating around the world. By their very nature, they are obscure companies whose internal workings are largely unknown, apart from leaks to the press. They are even more concealed when it comes to their underlying technology. At least in a broad sense, it is believed that there are two main tasks performed by a troll factory: sowing and spreading. The first is to create and, more importantly, maintain a social network that can be used for the spreading task. It is then a wicked long-term activity, subject to all sorts of problems. As an attempt to make this perspective a little clearer, this paper uses exploratory design science research to produce artefacts that could be applied to online rumour spreading in social media. Then, as a hypothesis: it is possible to design a fully automated social media agent capable of sowing a social network on microblogging platforms. The expectation is that it will be possible to identify common opportunities and difficulties in the development of such tools, which in turn will allow an evaluation of the technology, but above all the level of automation of these facilities. The research is based on a general domain Twitter corpus with 4M+ tokens and on ChatGPT, and discusses both knowledge-based and deep learning approaches for smooth tweet generation. These explorations suggest that for the current, widespread and publicly available NLP technology, troll factories work like a call centre; i.e. humans assisted by more or less sophisticated computing tools (often called cyborgs).","PeriodicalId":50358,"journal":{"name":"Integrated Computer-Aided Engineering","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An exploratory design science research on troll factories\",\"authors\":\"Francisco S. Marcondes, José João Almeida, Paulo Novais\",\"doi\":\"10.3233/ica-230720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Private and military troll factories (facilities used to spread rumours in online social media) are currently proliferating around the world. By their very nature, they are obscure companies whose internal workings are largely unknown, apart from leaks to the press. They are even more concealed when it comes to their underlying technology. At least in a broad sense, it is believed that there are two main tasks performed by a troll factory: sowing and spreading. The first is to create and, more importantly, maintain a social network that can be used for the spreading task. It is then a wicked long-term activity, subject to all sorts of problems. As an attempt to make this perspective a little clearer, this paper uses exploratory design science research to produce artefacts that could be applied to online rumour spreading in social media. Then, as a hypothesis: it is possible to design a fully automated social media agent capable of sowing a social network on microblogging platforms. The expectation is that it will be possible to identify common opportunities and difficulties in the development of such tools, which in turn will allow an evaluation of the technology, but above all the level of automation of these facilities. The research is based on a general domain Twitter corpus with 4M+ tokens and on ChatGPT, and discusses both knowledge-based and deep learning approaches for smooth tweet generation. These explorations suggest that for the current, widespread and publicly available NLP technology, troll factories work like a call centre; i.e. humans assisted by more or less sophisticated computing tools (often called cyborgs).\",\"PeriodicalId\":50358,\"journal\":{\"name\":\"Integrated Computer-Aided Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrated Computer-Aided Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/ica-230720\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Computer-Aided Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ica-230720","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
An exploratory design science research on troll factories
Private and military troll factories (facilities used to spread rumours in online social media) are currently proliferating around the world. By their very nature, they are obscure companies whose internal workings are largely unknown, apart from leaks to the press. They are even more concealed when it comes to their underlying technology. At least in a broad sense, it is believed that there are two main tasks performed by a troll factory: sowing and spreading. The first is to create and, more importantly, maintain a social network that can be used for the spreading task. It is then a wicked long-term activity, subject to all sorts of problems. As an attempt to make this perspective a little clearer, this paper uses exploratory design science research to produce artefacts that could be applied to online rumour spreading in social media. Then, as a hypothesis: it is possible to design a fully automated social media agent capable of sowing a social network on microblogging platforms. The expectation is that it will be possible to identify common opportunities and difficulties in the development of such tools, which in turn will allow an evaluation of the technology, but above all the level of automation of these facilities. The research is based on a general domain Twitter corpus with 4M+ tokens and on ChatGPT, and discusses both knowledge-based and deep learning approaches for smooth tweet generation. These explorations suggest that for the current, widespread and publicly available NLP technology, troll factories work like a call centre; i.e. humans assisted by more or less sophisticated computing tools (often called cyborgs).
期刊介绍:
Integrated Computer-Aided Engineering (ICAE) was founded in 1993. "Based on the premise that interdisciplinary thinking and synergistic collaboration of disciplines can solve complex problems, open new frontiers, and lead to true innovations and breakthroughs, the cornerstone of industrial competitiveness and advancement of the society" as noted in the inaugural issue of the journal.
The focus of ICAE is the integration of leading edge and emerging computer and information technologies for innovative solution of engineering problems. The journal fosters interdisciplinary research and presents a unique forum for innovative computer-aided engineering. It also publishes novel industrial applications of CAE, thus helping to bring new computational paradigms from research labs and classrooms to reality. Areas covered by the journal include (but are not limited to) artificial intelligence, advanced signal processing, biologically inspired computing, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, intelligent and adaptive systems, internet-based technologies, knowledge discovery and engineering, machine learning, mechatronics, mobile computing, multimedia technologies, networking, neural network computing, object-oriented systems, optimization and search, parallel processing, robotics virtual reality, and visualization techniques.