Lauri Malmi, Judy Sheard, Päivi Kinnunen, Simon, Jane Sinclair
{"title":"计算机教育中特定领域学习理论、模型和工具的发展和使用","authors":"Lauri Malmi, Judy Sheard, Päivi Kinnunen, Simon, Jane Sinclair","doi":"https://dl.acm.org/doi/10.1145/3530221","DOIUrl":null,"url":null,"abstract":"<p>Use of theory within a field of research provides the foundation for designing effective research programs and establishing a deeper understanding of the results obtained. This, together with the emergence of domain-specific theory, is often taken as an indicator of the maturity of any research area. This article explores the development and subsequent usage of domain-specific theories and theoretical constructs (TCs) in computing education research (CER). All TCs found in 878 papers published in three major CER publication venues over the period 2005–2020 were identified and assessed to determine the nature and purpose of the constructs found. We focused more closely on areas related to learning, studying, and progression, where our analysis found 80 new TCs that had been developed, based on multiple epistemological perspectives. Several existing frameworks were used to categorize the areas of CER focus in which TCs were found, the methodology by which they were developed, and the nature and purpose of the TCs. A citation analysis was undertaken, with 1,727 citing papers accessed to determine to what extent and in what ways TCs had been used and developed to inform subsequent work, also considering whether these aspects vary according to different focus areas within computing education. We noted which TCs were used most often and least often, and we present several brief case studies that demonstrate progressive development of domain-specific theory. The exploration provides insights into trends in theory development and suggests areas in which further work might be called for. Our findings indicate a general interest in the development of TCs during the period studied, and we show examples of how different approaches to theory development have been used. We present a framework suggesting how strategies for developing new TCs in CER might be structured and discuss the nature of theory development in relation to the field of CER. </p><p></p>","PeriodicalId":48764,"journal":{"name":"ACM Transactions on Computing Education","volume":"36 20","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and Use of Domain-specific Learning Theories, Models, and Instruments in Computing Education\",\"authors\":\"Lauri Malmi, Judy Sheard, Päivi Kinnunen, Simon, Jane Sinclair\",\"doi\":\"https://dl.acm.org/doi/10.1145/3530221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Use of theory within a field of research provides the foundation for designing effective research programs and establishing a deeper understanding of the results obtained. This, together with the emergence of domain-specific theory, is often taken as an indicator of the maturity of any research area. This article explores the development and subsequent usage of domain-specific theories and theoretical constructs (TCs) in computing education research (CER). All TCs found in 878 papers published in three major CER publication venues over the period 2005–2020 were identified and assessed to determine the nature and purpose of the constructs found. We focused more closely on areas related to learning, studying, and progression, where our analysis found 80 new TCs that had been developed, based on multiple epistemological perspectives. Several existing frameworks were used to categorize the areas of CER focus in which TCs were found, the methodology by which they were developed, and the nature and purpose of the TCs. A citation analysis was undertaken, with 1,727 citing papers accessed to determine to what extent and in what ways TCs had been used and developed to inform subsequent work, also considering whether these aspects vary according to different focus areas within computing education. We noted which TCs were used most often and least often, and we present several brief case studies that demonstrate progressive development of domain-specific theory. The exploration provides insights into trends in theory development and suggests areas in which further work might be called for. Our findings indicate a general interest in the development of TCs during the period studied, and we show examples of how different approaches to theory development have been used. We present a framework suggesting how strategies for developing new TCs in CER might be structured and discuss the nature of theory development in relation to the field of CER. </p><p></p>\",\"PeriodicalId\":48764,\"journal\":{\"name\":\"ACM Transactions on Computing Education\",\"volume\":\"36 20\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computing Education\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3530221\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computing Education","FirstCategoryId":"5","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3530221","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
Development and Use of Domain-specific Learning Theories, Models, and Instruments in Computing Education
Use of theory within a field of research provides the foundation for designing effective research programs and establishing a deeper understanding of the results obtained. This, together with the emergence of domain-specific theory, is often taken as an indicator of the maturity of any research area. This article explores the development and subsequent usage of domain-specific theories and theoretical constructs (TCs) in computing education research (CER). All TCs found in 878 papers published in three major CER publication venues over the period 2005–2020 were identified and assessed to determine the nature and purpose of the constructs found. We focused more closely on areas related to learning, studying, and progression, where our analysis found 80 new TCs that had been developed, based on multiple epistemological perspectives. Several existing frameworks were used to categorize the areas of CER focus in which TCs were found, the methodology by which they were developed, and the nature and purpose of the TCs. A citation analysis was undertaken, with 1,727 citing papers accessed to determine to what extent and in what ways TCs had been used and developed to inform subsequent work, also considering whether these aspects vary according to different focus areas within computing education. We noted which TCs were used most often and least often, and we present several brief case studies that demonstrate progressive development of domain-specific theory. The exploration provides insights into trends in theory development and suggests areas in which further work might be called for. Our findings indicate a general interest in the development of TCs during the period studied, and we show examples of how different approaches to theory development have been used. We present a framework suggesting how strategies for developing new TCs in CER might be structured and discuss the nature of theory development in relation to the field of CER.
期刊介绍:
ACM Transactions on Computing Education (TOCE) (formerly named JERIC, Journal on Educational Resources in Computing) covers diverse aspects of computing education: traditional computer science, computer engineering, information technology, and informatics; emerging aspects of computing; and applications of computing to other disciplines. The common characteristics shared by these papers are a scholarly approach to teaching and learning, a broad appeal to educational practitioners, and a clear connection to student learning.