基于非负最小二乘求解器的函数非线性逼近

IF 1.8 3区 数学 Q1 MATHEMATICS
Petr N. Vabishchevich
{"title":"基于非负最小二乘求解器的函数非线性逼近","authors":"Petr N. Vabishchevich","doi":"10.1002/nla.2522","DOIUrl":null,"url":null,"abstract":"In computational practice, most attention is paid to rational approximations of functions and approximations by the sum of exponents. We consider a wide enough class of nonlinear approximations characterized by a set of two required parameters. The approximating function is linear in the first parameter; these parameters are assumed to be positive. The individual terms of the approximating function represent a fixed function that depends nonlinearly on the second parameter. A numerical approximation minimizes the residual functional by approximating function values at individual points. The second parameter's value is set on a more extensive set of points of the interval of permissible values. The proposed approach's key feature consists in determining the first parameter on each separate iteration of the classical nonnegative least squares method. The computational algorithm is used to rational approximate the function <math altimg=\"urn:x-wiley:nla:media:nla2522:nla2522-math-0001\" display=\"inline\" location=\"graphic/nla2522-math-0001.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<msup>\n<mrow>\n<mi>x</mi>\n</mrow>\n<mrow>\n<mo form=\"prefix\">−</mo>\n<mi>α</mi>\n</mrow>\n</msup>\n<mo>,</mo>\n<mspace width=\"0.3em\"></mspace>\n<mn>0</mn>\n<mo>&lt;</mo>\n<mi>α</mi>\n<mo>&lt;</mo>\n<mn>1</mn>\n<mo>,</mo>\n<mspace width=\"0.3em\"></mspace>\n<mi>x</mi>\n<mo>≥</mo>\n<mn>1</mn>\n</mrow>\n$$ {x}^{-\\alpha },\\kern0.3em 0&lt;\\alpha &lt;1,\\kern0.3em x\\ge 1 $$</annotation>\n</semantics></math>. The second example concerns the approximation of the stretching exponential function <math altimg=\"urn:x-wiley:nla:media:nla2522:nla2522-math-0002\" display=\"inline\" location=\"graphic/nla2522-math-0002.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>exp</mi>\n<mo stretchy=\"false\">(</mo>\n<mo form=\"prefix\">−</mo>\n<msup>\n<mrow>\n<mi>x</mi>\n</mrow>\n<mrow>\n<mi>α</mi>\n</mrow>\n</msup>\n<mo stretchy=\"false\">)</mo>\n<mo>,</mo>\n<mspace width=\"0.0em\"></mspace>\n<mspace width=\"0.0em\"></mspace>\n<mspace width=\"0.2em\"></mspace>\n<mn>0</mn>\n<mo>&lt;</mo>\n<mi>α</mi>\n<mo>&lt;</mo>\n<mn>1</mn>\n</mrow>\n$$ \\exp \\left(-{x}^{\\alpha}\\right),0&lt;\\alpha &lt;1 $$</annotation>\n</semantics></math> at <math altimg=\"urn:x-wiley:nla:media:nla2522:nla2522-math-0003\" display=\"inline\" location=\"graphic/nla2522-math-0003.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>x</mi>\n<mo>≥</mo>\n<mn>0</mn>\n</mrow>\n$$ x\\ge 0 $$</annotation>\n</semantics></math> by the sum of exponents.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear approximation of functions based on nonnegative least squares solver\",\"authors\":\"Petr N. Vabishchevich\",\"doi\":\"10.1002/nla.2522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In computational practice, most attention is paid to rational approximations of functions and approximations by the sum of exponents. We consider a wide enough class of nonlinear approximations characterized by a set of two required parameters. The approximating function is linear in the first parameter; these parameters are assumed to be positive. The individual terms of the approximating function represent a fixed function that depends nonlinearly on the second parameter. A numerical approximation minimizes the residual functional by approximating function values at individual points. The second parameter's value is set on a more extensive set of points of the interval of permissible values. The proposed approach's key feature consists in determining the first parameter on each separate iteration of the classical nonnegative least squares method. The computational algorithm is used to rational approximate the function <math altimg=\\\"urn:x-wiley:nla:media:nla2522:nla2522-math-0001\\\" display=\\\"inline\\\" location=\\\"graphic/nla2522-math-0001.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<msup>\\n<mrow>\\n<mi>x</mi>\\n</mrow>\\n<mrow>\\n<mo form=\\\"prefix\\\">−</mo>\\n<mi>α</mi>\\n</mrow>\\n</msup>\\n<mo>,</mo>\\n<mspace width=\\\"0.3em\\\"></mspace>\\n<mn>0</mn>\\n<mo>&lt;</mo>\\n<mi>α</mi>\\n<mo>&lt;</mo>\\n<mn>1</mn>\\n<mo>,</mo>\\n<mspace width=\\\"0.3em\\\"></mspace>\\n<mi>x</mi>\\n<mo>≥</mo>\\n<mn>1</mn>\\n</mrow>\\n$$ {x}^{-\\\\alpha },\\\\kern0.3em 0&lt;\\\\alpha &lt;1,\\\\kern0.3em x\\\\ge 1 $$</annotation>\\n</semantics></math>. The second example concerns the approximation of the stretching exponential function <math altimg=\\\"urn:x-wiley:nla:media:nla2522:nla2522-math-0002\\\" display=\\\"inline\\\" location=\\\"graphic/nla2522-math-0002.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mi>exp</mi>\\n<mo stretchy=\\\"false\\\">(</mo>\\n<mo form=\\\"prefix\\\">−</mo>\\n<msup>\\n<mrow>\\n<mi>x</mi>\\n</mrow>\\n<mrow>\\n<mi>α</mi>\\n</mrow>\\n</msup>\\n<mo stretchy=\\\"false\\\">)</mo>\\n<mo>,</mo>\\n<mspace width=\\\"0.0em\\\"></mspace>\\n<mspace width=\\\"0.0em\\\"></mspace>\\n<mspace width=\\\"0.2em\\\"></mspace>\\n<mn>0</mn>\\n<mo>&lt;</mo>\\n<mi>α</mi>\\n<mo>&lt;</mo>\\n<mn>1</mn>\\n</mrow>\\n$$ \\\\exp \\\\left(-{x}^{\\\\alpha}\\\\right),0&lt;\\\\alpha &lt;1 $$</annotation>\\n</semantics></math> at <math altimg=\\\"urn:x-wiley:nla:media:nla2522:nla2522-math-0003\\\" display=\\\"inline\\\" location=\\\"graphic/nla2522-math-0003.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mi>x</mi>\\n<mo>≥</mo>\\n<mn>0</mn>\\n</mrow>\\n$$ x\\\\ge 0 $$</annotation>\\n</semantics></math> by the sum of exponents.\",\"PeriodicalId\":49731,\"journal\":{\"name\":\"Numerical Linear Algebra with Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Linear Algebra with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/nla.2522\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2522","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在计算实践中,最关注的是函数的有理逼近和指数和逼近。我们考虑一类足够广泛的非线性近似,其特征为两个必需参数的集合。第一个参数的近似函数是线性的;假设这些参数是正的。近似函数的各个项表示一个非线性依赖于第二个参数的固定函数。数值逼近通过逼近单个点上的函数值来最小化残差泛函。第二个参数的值设置在允许值区间的更广泛的点集上。该方法的主要特点是在经典非负最小二乘法的每次单独迭代中确定第一个参数。利用计算算法对函数x−α,0&lt;α&lt;1,x≥1 $$ {x}^{-\alpha },\kern0.3em 0<\alpha <1,\kern0.3em x\ge 1 $$进行有理逼近。第二个例子涉及到在x≥0 $$ x\ge 0 $$处,通过指数和逼近拉伸指数函数exp(- xα),0&lt;α&lt;1 $$ \exp \left(-{x}^{\alpha}\right),0<\alpha <1 $$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear approximation of functions based on nonnegative least squares solver
In computational practice, most attention is paid to rational approximations of functions and approximations by the sum of exponents. We consider a wide enough class of nonlinear approximations characterized by a set of two required parameters. The approximating function is linear in the first parameter; these parameters are assumed to be positive. The individual terms of the approximating function represent a fixed function that depends nonlinearly on the second parameter. A numerical approximation minimizes the residual functional by approximating function values at individual points. The second parameter's value is set on a more extensive set of points of the interval of permissible values. The proposed approach's key feature consists in determining the first parameter on each separate iteration of the classical nonnegative least squares method. The computational algorithm is used to rational approximate the function x α , 0 < α < 1 , x 1 $$ {x}^{-\alpha },\kern0.3em 0<\alpha <1,\kern0.3em x\ge 1 $$ . The second example concerns the approximation of the stretching exponential function exp ( x α ) , 0 < α < 1 $$ \exp \left(-{x}^{\alpha}\right),0<\alpha <1 $$ at x 0 $$ x\ge 0 $$ by the sum of exponents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
2.30%
发文量
50
审稿时长
12 months
期刊介绍: Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review. Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects. Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信