{"title":"基于非负最小二乘求解器的函数非线性逼近","authors":"Petr N. Vabishchevich","doi":"10.1002/nla.2522","DOIUrl":null,"url":null,"abstract":"In computational practice, most attention is paid to rational approximations of functions and approximations by the sum of exponents. We consider a wide enough class of nonlinear approximations characterized by a set of two required parameters. The approximating function is linear in the first parameter; these parameters are assumed to be positive. The individual terms of the approximating function represent a fixed function that depends nonlinearly on the second parameter. A numerical approximation minimizes the residual functional by approximating function values at individual points. The second parameter's value is set on a more extensive set of points of the interval of permissible values. The proposed approach's key feature consists in determining the first parameter on each separate iteration of the classical nonnegative least squares method. The computational algorithm is used to rational approximate the function <math altimg=\"urn:x-wiley:nla:media:nla2522:nla2522-math-0001\" display=\"inline\" location=\"graphic/nla2522-math-0001.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<msup>\n<mrow>\n<mi>x</mi>\n</mrow>\n<mrow>\n<mo form=\"prefix\">−</mo>\n<mi>α</mi>\n</mrow>\n</msup>\n<mo>,</mo>\n<mspace width=\"0.3em\"></mspace>\n<mn>0</mn>\n<mo><</mo>\n<mi>α</mi>\n<mo><</mo>\n<mn>1</mn>\n<mo>,</mo>\n<mspace width=\"0.3em\"></mspace>\n<mi>x</mi>\n<mo>≥</mo>\n<mn>1</mn>\n</mrow>\n$$ {x}^{-\\alpha },\\kern0.3em 0<\\alpha <1,\\kern0.3em x\\ge 1 $$</annotation>\n</semantics></math>. The second example concerns the approximation of the stretching exponential function <math altimg=\"urn:x-wiley:nla:media:nla2522:nla2522-math-0002\" display=\"inline\" location=\"graphic/nla2522-math-0002.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>exp</mi>\n<mo stretchy=\"false\">(</mo>\n<mo form=\"prefix\">−</mo>\n<msup>\n<mrow>\n<mi>x</mi>\n</mrow>\n<mrow>\n<mi>α</mi>\n</mrow>\n</msup>\n<mo stretchy=\"false\">)</mo>\n<mo>,</mo>\n<mspace width=\"0.0em\"></mspace>\n<mspace width=\"0.0em\"></mspace>\n<mspace width=\"0.2em\"></mspace>\n<mn>0</mn>\n<mo><</mo>\n<mi>α</mi>\n<mo><</mo>\n<mn>1</mn>\n</mrow>\n$$ \\exp \\left(-{x}^{\\alpha}\\right),0<\\alpha <1 $$</annotation>\n</semantics></math> at <math altimg=\"urn:x-wiley:nla:media:nla2522:nla2522-math-0003\" display=\"inline\" location=\"graphic/nla2522-math-0003.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>x</mi>\n<mo>≥</mo>\n<mn>0</mn>\n</mrow>\n$$ x\\ge 0 $$</annotation>\n</semantics></math> by the sum of exponents.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear approximation of functions based on nonnegative least squares solver\",\"authors\":\"Petr N. Vabishchevich\",\"doi\":\"10.1002/nla.2522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In computational practice, most attention is paid to rational approximations of functions and approximations by the sum of exponents. We consider a wide enough class of nonlinear approximations characterized by a set of two required parameters. The approximating function is linear in the first parameter; these parameters are assumed to be positive. The individual terms of the approximating function represent a fixed function that depends nonlinearly on the second parameter. A numerical approximation minimizes the residual functional by approximating function values at individual points. The second parameter's value is set on a more extensive set of points of the interval of permissible values. The proposed approach's key feature consists in determining the first parameter on each separate iteration of the classical nonnegative least squares method. The computational algorithm is used to rational approximate the function <math altimg=\\\"urn:x-wiley:nla:media:nla2522:nla2522-math-0001\\\" display=\\\"inline\\\" location=\\\"graphic/nla2522-math-0001.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<msup>\\n<mrow>\\n<mi>x</mi>\\n</mrow>\\n<mrow>\\n<mo form=\\\"prefix\\\">−</mo>\\n<mi>α</mi>\\n</mrow>\\n</msup>\\n<mo>,</mo>\\n<mspace width=\\\"0.3em\\\"></mspace>\\n<mn>0</mn>\\n<mo><</mo>\\n<mi>α</mi>\\n<mo><</mo>\\n<mn>1</mn>\\n<mo>,</mo>\\n<mspace width=\\\"0.3em\\\"></mspace>\\n<mi>x</mi>\\n<mo>≥</mo>\\n<mn>1</mn>\\n</mrow>\\n$$ {x}^{-\\\\alpha },\\\\kern0.3em 0<\\\\alpha <1,\\\\kern0.3em x\\\\ge 1 $$</annotation>\\n</semantics></math>. The second example concerns the approximation of the stretching exponential function <math altimg=\\\"urn:x-wiley:nla:media:nla2522:nla2522-math-0002\\\" display=\\\"inline\\\" location=\\\"graphic/nla2522-math-0002.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mi>exp</mi>\\n<mo stretchy=\\\"false\\\">(</mo>\\n<mo form=\\\"prefix\\\">−</mo>\\n<msup>\\n<mrow>\\n<mi>x</mi>\\n</mrow>\\n<mrow>\\n<mi>α</mi>\\n</mrow>\\n</msup>\\n<mo stretchy=\\\"false\\\">)</mo>\\n<mo>,</mo>\\n<mspace width=\\\"0.0em\\\"></mspace>\\n<mspace width=\\\"0.0em\\\"></mspace>\\n<mspace width=\\\"0.2em\\\"></mspace>\\n<mn>0</mn>\\n<mo><</mo>\\n<mi>α</mi>\\n<mo><</mo>\\n<mn>1</mn>\\n</mrow>\\n$$ \\\\exp \\\\left(-{x}^{\\\\alpha}\\\\right),0<\\\\alpha <1 $$</annotation>\\n</semantics></math> at <math altimg=\\\"urn:x-wiley:nla:media:nla2522:nla2522-math-0003\\\" display=\\\"inline\\\" location=\\\"graphic/nla2522-math-0003.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mi>x</mi>\\n<mo>≥</mo>\\n<mn>0</mn>\\n</mrow>\\n$$ x\\\\ge 0 $$</annotation>\\n</semantics></math> by the sum of exponents.\",\"PeriodicalId\":49731,\"journal\":{\"name\":\"Numerical Linear Algebra with Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Linear Algebra with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/nla.2522\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2522","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Nonlinear approximation of functions based on nonnegative least squares solver
In computational practice, most attention is paid to rational approximations of functions and approximations by the sum of exponents. We consider a wide enough class of nonlinear approximations characterized by a set of two required parameters. The approximating function is linear in the first parameter; these parameters are assumed to be positive. The individual terms of the approximating function represent a fixed function that depends nonlinearly on the second parameter. A numerical approximation minimizes the residual functional by approximating function values at individual points. The second parameter's value is set on a more extensive set of points of the interval of permissible values. The proposed approach's key feature consists in determining the first parameter on each separate iteration of the classical nonnegative least squares method. The computational algorithm is used to rational approximate the function . The second example concerns the approximation of the stretching exponential function at by the sum of exponents.
期刊介绍:
Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review.
Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects.
Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.