{"title":"合成炉渣与普通炉渣化学成分的比较","authors":"Luis Schnürer, Alisa Machner","doi":"10.1002/cepa.2933","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>To study the effect of the main oxides and the minor components in slags on their reactivity as SCM, various glasses were synthesized to stepwise imitate a commercial slag of average chemical composition. First, a glass was produced from the main oxides CaO, Al<sub>2</sub>O<sub>3</sub> and SiO<sub>2</sub>. In a second step, the minor components MgO, Fe<sub>2</sub>O<sub>3</sub>, Na<sub>2</sub>O and K<sub>2</sub>O were added separately to the main oxide mix. A selection of two synthetic glasses was tested for their compressive strength contribution (up to 90 days) by substituting 20 wt.% of cement. After all testing times, the synthetic slags achieved a strength similar to that of the commercial product. The reactivities determined by heat flow calorimetry (R<sup>3</sup> test) correlate with the calculation of NBO/T and the results of <sup>29</sup>Si MAS NMR showing that a decreased degree of polymerization enhances the reactivity. Apart from that, FTIR spectroscopy and <sup>27</sup>Al MAS NMR indicate a similar structure of the original and the synthetic slags.</p>\n </div>","PeriodicalId":100223,"journal":{"name":"ce/papers","volume":"6 6","pages":"181-188"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cepa.2933","citationCount":"0","resultStr":"{\"title\":\"Effects of the Chemical Composition of Synthetic Slags Compared to an Average Blast Furnace Slag\",\"authors\":\"Luis Schnürer, Alisa Machner\",\"doi\":\"10.1002/cepa.2933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>To study the effect of the main oxides and the minor components in slags on their reactivity as SCM, various glasses were synthesized to stepwise imitate a commercial slag of average chemical composition. First, a glass was produced from the main oxides CaO, Al<sub>2</sub>O<sub>3</sub> and SiO<sub>2</sub>. In a second step, the minor components MgO, Fe<sub>2</sub>O<sub>3</sub>, Na<sub>2</sub>O and K<sub>2</sub>O were added separately to the main oxide mix. A selection of two synthetic glasses was tested for their compressive strength contribution (up to 90 days) by substituting 20 wt.% of cement. After all testing times, the synthetic slags achieved a strength similar to that of the commercial product. The reactivities determined by heat flow calorimetry (R<sup>3</sup> test) correlate with the calculation of NBO/T and the results of <sup>29</sup>Si MAS NMR showing that a decreased degree of polymerization enhances the reactivity. Apart from that, FTIR spectroscopy and <sup>27</sup>Al MAS NMR indicate a similar structure of the original and the synthetic slags.</p>\\n </div>\",\"PeriodicalId\":100223,\"journal\":{\"name\":\"ce/papers\",\"volume\":\"6 6\",\"pages\":\"181-188\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cepa.2933\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ce/papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cepa.2933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ce/papers","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cepa.2933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
为了研究矿渣中主要氧化物和次要组分对矿渣作为SCM反应性的影响,合成了各种玻璃,逐步模拟了平均化学成分的工业矿渣。首先,以CaO、Al2O3和SiO2为主要氧化物制备玻璃。在第二步,次要组分MgO, Fe2O3, Na2O和K2O分别加入到主氧化物混合物中。通过替换20%的水泥,测试了两种合成玻璃的抗压强度贡献(长达90天)。经过多次测试,合成炉渣达到了与商业产品相似的强度。热流量热法(R3测试)测定的反应性与NBO/T的计算结果相一致,29Si MAS NMR结果表明聚合度的降低提高了反应性。除此之外,FTIR光谱和27Al MAS NMR表明原始炉渣和合成炉渣具有相似的结构。
Effects of the Chemical Composition of Synthetic Slags Compared to an Average Blast Furnace Slag
To study the effect of the main oxides and the minor components in slags on their reactivity as SCM, various glasses were synthesized to stepwise imitate a commercial slag of average chemical composition. First, a glass was produced from the main oxides CaO, Al2O3 and SiO2. In a second step, the minor components MgO, Fe2O3, Na2O and K2O were added separately to the main oxide mix. A selection of two synthetic glasses was tested for their compressive strength contribution (up to 90 days) by substituting 20 wt.% of cement. After all testing times, the synthetic slags achieved a strength similar to that of the commercial product. The reactivities determined by heat flow calorimetry (R3 test) correlate with the calculation of NBO/T and the results of 29Si MAS NMR showing that a decreased degree of polymerization enhances the reactivity. Apart from that, FTIR spectroscopy and 27Al MAS NMR indicate a similar structure of the original and the synthetic slags.