半正数Hadamard分数边值问题的一种新方法

Q1 Mathematics
Rui Liu , Chengbo Zhai , Jing Ren
{"title":"半正数Hadamard分数边值问题的一种新方法","authors":"Rui Liu ,&nbsp;Chengbo Zhai ,&nbsp;Jing Ren","doi":"10.1016/j.csfx.2023.100102","DOIUrl":null,"url":null,"abstract":"<div><p>A Hadamard fractional boundary value problem with semi-positone nonlinearity is studied in this paper, and the local existence and uniqueness of solutions are derived by a recent fixed point theorem involving with increasing <span><math><mi>φ</mi><mo>−</mo><mo>(</mo><mi>h</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span>-concave operators defined on ordered spaces. This is an unprecedented approach to solve the semi-positone problems. In practice, this method has a wider range of applicability since it can obtain the local uniqueness of the solutions. Furthermore, we can approximate the unique solution by constructing convergent iterative sequences. In the end, a persuasive example is provided to illustrate that the theoretical results we obtained are applicable and valid.</p></div>","PeriodicalId":37147,"journal":{"name":"Chaos, Solitons and Fractals: X","volume":"12 ","pages":"Article 100102"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259005442300012X/pdfft?md5=5a814fb3810acba3cbb5e6c5efee0ae6&pid=1-s2.0-S259005442300012X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A new method for a semi-positone Hadamard fractional boundary value problem\",\"authors\":\"Rui Liu ,&nbsp;Chengbo Zhai ,&nbsp;Jing Ren\",\"doi\":\"10.1016/j.csfx.2023.100102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A Hadamard fractional boundary value problem with semi-positone nonlinearity is studied in this paper, and the local existence and uniqueness of solutions are derived by a recent fixed point theorem involving with increasing <span><math><mi>φ</mi><mo>−</mo><mo>(</mo><mi>h</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span>-concave operators defined on ordered spaces. This is an unprecedented approach to solve the semi-positone problems. In practice, this method has a wider range of applicability since it can obtain the local uniqueness of the solutions. Furthermore, we can approximate the unique solution by constructing convergent iterative sequences. In the end, a persuasive example is provided to illustrate that the theoretical results we obtained are applicable and valid.</p></div>\",\"PeriodicalId\":37147,\"journal\":{\"name\":\"Chaos, Solitons and Fractals: X\",\"volume\":\"12 \",\"pages\":\"Article 100102\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S259005442300012X/pdfft?md5=5a814fb3810acba3cbb5e6c5efee0ae6&pid=1-s2.0-S259005442300012X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos, Solitons and Fractals: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S259005442300012X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos, Solitons and Fractals: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259005442300012X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类半正负非线性的Hadamard分数阶边值问题,利用一个新的不动点定理,得到了该问题解的局部存在唯一性,该不动点定理涉及在有序空间上定义的φ−(h,r)-凹算子的递增。这是一种前所未有的解决半正极问题的方法。在实际应用中,该方法可以获得解的局部唯一性,适用范围更广。此外,我们可以通过构造收敛迭代序列来逼近唯一解。最后,通过一个有说服力的实例说明了所得理论结果的适用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new method for a semi-positone Hadamard fractional boundary value problem

A Hadamard fractional boundary value problem with semi-positone nonlinearity is studied in this paper, and the local existence and uniqueness of solutions are derived by a recent fixed point theorem involving with increasing φ(h,r)-concave operators defined on ordered spaces. This is an unprecedented approach to solve the semi-positone problems. In practice, this method has a wider range of applicability since it can obtain the local uniqueness of the solutions. Furthermore, we can approximate the unique solution by constructing convergent iterative sequences. In the end, a persuasive example is provided to illustrate that the theoretical results we obtained are applicable and valid.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos, Solitons and Fractals: X
Chaos, Solitons and Fractals: X Mathematics-Mathematics (all)
CiteScore
5.00
自引率
0.00%
发文量
15
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信