{"title":"S2中的Chekanov环和Gelfand-Zeitlin环 × S2","authors":"Yoosik Kim","doi":"10.1016/j.difgeo.2023.102091","DOIUrl":null,"url":null,"abstract":"<div><p>The Chekanov torus is the first known <em>exotic</em><span><span> torus, a monotone Lagrangian torus that is not </span>Hamiltonian<span> isotopic to the standard monotone Lagrangian torus. We explore the relationship between the Chekanov torus in </span></span><span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and a monotone Lagrangian torus that had been constructed before Chekanov's construction <span>[6]</span>. We prove that the monotone Lagrangian torus fiber in a certain Gelfand–Zeitlin system is related to the Chekanov torus in <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> by a symplectomorphism.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"93 ","pages":"Article 102091"},"PeriodicalIF":0.6000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chekanov torus and Gelfand–Zeitlin torus in S2 × S2\",\"authors\":\"Yoosik Kim\",\"doi\":\"10.1016/j.difgeo.2023.102091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Chekanov torus is the first known <em>exotic</em><span><span> torus, a monotone Lagrangian torus that is not </span>Hamiltonian<span> isotopic to the standard monotone Lagrangian torus. We explore the relationship between the Chekanov torus in </span></span><span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and a monotone Lagrangian torus that had been constructed before Chekanov's construction <span>[6]</span>. We prove that the monotone Lagrangian torus fiber in a certain Gelfand–Zeitlin system is related to the Chekanov torus in <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> by a symplectomorphism.</p></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"93 \",\"pages\":\"Article 102091\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224523001171\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224523001171","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Chekanov torus and Gelfand–Zeitlin torus in S2 × S2
The Chekanov torus is the first known exotic torus, a monotone Lagrangian torus that is not Hamiltonian isotopic to the standard monotone Lagrangian torus. We explore the relationship between the Chekanov torus in and a monotone Lagrangian torus that had been constructed before Chekanov's construction [6]. We prove that the monotone Lagrangian torus fiber in a certain Gelfand–Zeitlin system is related to the Chekanov torus in by a symplectomorphism.
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.