{"title":"介孔有序二氧化钛薄膜:一种先进的光催化平台","authors":"Plinio Innocenzi, Luca Malfatti","doi":"10.1016/j.jphotochemrev.2023.100646","DOIUrl":null,"url":null,"abstract":"<div><p>Mesoporous materials possess unique structural characteristics, such as high surface area, large pore volume, and interconnected pore networks, which make them ideal candidates for photocatalysis. The objective of this review is to critically analyse the synthesis methods, characterization techniques, and photocatalytic performance of mesoporous titania films for photocatalysis. The article begins by providing a short overview of the chemical-physical processes involved in photocatalysis of titania. It highlights the need for efficient photocatalytic materials with enhanced surface area and light harvesting capabilities. Subsequently, the synthesis methods for creating mesoporous titania films are discussed, including sol-gel chemistry, templating approaches, and self-assembly techniques. Emphasis is placed on the control of pore size, distribution, and film thickness to optimize the photocatalytic performance. The influence of synthesis parameters on the film porosity, crystallinity, and surface area is examined in detail. Furthermore, the review highlights recent advancements in the field, including strategies to enhance the photocatalytic performance of mesoporous titania films through doping, surface modification, and heterostructure formation. These approaches aim to improve the light absorption, charge separation, and reactant accessibility, thus maximizing the utilization of solar energy for efficient photocatalysis. In conclusion, mesoporous titania films demonstrate great potential as effective photocatalytic materials. Their unique structural features, combined with proper synthesis and characterization, contribute to enhanced photocatalytic performance. Further research and development in this area may lead to the design and fabrication of advanced mesoporous titania films for a wide range of environmental and energy applications.</p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"58 ","pages":"Article 100646"},"PeriodicalIF":12.8000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1389556723000771/pdfft?md5=4b8f64967ed43c2afa273cfa517e88bb&pid=1-s2.0-S1389556723000771-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Mesoporous ordered titania films: An advanced platform for photocatalysis\",\"authors\":\"Plinio Innocenzi, Luca Malfatti\",\"doi\":\"10.1016/j.jphotochemrev.2023.100646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mesoporous materials possess unique structural characteristics, such as high surface area, large pore volume, and interconnected pore networks, which make them ideal candidates for photocatalysis. The objective of this review is to critically analyse the synthesis methods, characterization techniques, and photocatalytic performance of mesoporous titania films for photocatalysis. The article begins by providing a short overview of the chemical-physical processes involved in photocatalysis of titania. It highlights the need for efficient photocatalytic materials with enhanced surface area and light harvesting capabilities. Subsequently, the synthesis methods for creating mesoporous titania films are discussed, including sol-gel chemistry, templating approaches, and self-assembly techniques. Emphasis is placed on the control of pore size, distribution, and film thickness to optimize the photocatalytic performance. The influence of synthesis parameters on the film porosity, crystallinity, and surface area is examined in detail. Furthermore, the review highlights recent advancements in the field, including strategies to enhance the photocatalytic performance of mesoporous titania films through doping, surface modification, and heterostructure formation. These approaches aim to improve the light absorption, charge separation, and reactant accessibility, thus maximizing the utilization of solar energy for efficient photocatalysis. In conclusion, mesoporous titania films demonstrate great potential as effective photocatalytic materials. Their unique structural features, combined with proper synthesis and characterization, contribute to enhanced photocatalytic performance. Further research and development in this area may lead to the design and fabrication of advanced mesoporous titania films for a wide range of environmental and energy applications.</p></div>\",\"PeriodicalId\":376,\"journal\":{\"name\":\"Journal of Photochemistry and Photobiology C: Photochemistry Reviews\",\"volume\":\"58 \",\"pages\":\"Article 100646\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1389556723000771/pdfft?md5=4b8f64967ed43c2afa273cfa517e88bb&pid=1-s2.0-S1389556723000771-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photochemistry and Photobiology C: Photochemistry Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389556723000771\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389556723000771","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Mesoporous ordered titania films: An advanced platform for photocatalysis
Mesoporous materials possess unique structural characteristics, such as high surface area, large pore volume, and interconnected pore networks, which make them ideal candidates for photocatalysis. The objective of this review is to critically analyse the synthesis methods, characterization techniques, and photocatalytic performance of mesoporous titania films for photocatalysis. The article begins by providing a short overview of the chemical-physical processes involved in photocatalysis of titania. It highlights the need for efficient photocatalytic materials with enhanced surface area and light harvesting capabilities. Subsequently, the synthesis methods for creating mesoporous titania films are discussed, including sol-gel chemistry, templating approaches, and self-assembly techniques. Emphasis is placed on the control of pore size, distribution, and film thickness to optimize the photocatalytic performance. The influence of synthesis parameters on the film porosity, crystallinity, and surface area is examined in detail. Furthermore, the review highlights recent advancements in the field, including strategies to enhance the photocatalytic performance of mesoporous titania films through doping, surface modification, and heterostructure formation. These approaches aim to improve the light absorption, charge separation, and reactant accessibility, thus maximizing the utilization of solar energy for efficient photocatalysis. In conclusion, mesoporous titania films demonstrate great potential as effective photocatalytic materials. Their unique structural features, combined with proper synthesis and characterization, contribute to enhanced photocatalytic performance. Further research and development in this area may lead to the design and fabrication of advanced mesoporous titania films for a wide range of environmental and energy applications.
期刊介绍:
The Journal of Photochemistry and Photobiology C: Photochemistry Reviews, published by Elsevier, is the official journal of the Japanese Photochemistry Association. It serves as a platform for scientists across various fields of photochemistry to communicate and collaborate, aiming to foster new interdisciplinary research areas. The journal covers a wide scope, including fundamental molecular photochemistry, organic and inorganic photochemistry, photoelectrochemistry, photocatalysis, solar energy conversion, photobiology, and more. It provides a forum for discussing advancements and promoting collaboration in the field of photochemistry.