{"title":"基于无锁紧有限元近似的Timoshenko光束稀疏最优控制","authors":"Erwin Hernández, Pedro Merino","doi":"10.1002/oca.3085","DOIUrl":null,"url":null,"abstract":"This paper addresses the optimal control problem with sparse controls of a Timoshenko beam, its numerical approximation using the finite element method, and the numerical solution via nonsmooth methods. Incorporating sparsity-promoting terms in the cost function is practically useful for beam vibration models and results in the localization of the control action that facilitates the placement of actuators or control devices. We consider two types of sparsity-inducing penalizers: the <math altimg=\"urn:x-wiley:oca:media:oca3085:oca3085-math-0001\" display=\"inline\" location=\"graphic/oca3085-math-0001.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<msup>\n<mrow>\n<mi>L</mi>\n</mrow>\n<mrow>\n<mn>1</mn>\n</mrow>\n</msup>\n</mrow>\n$$ {L}^1 $$</annotation>\n</semantics></math>-norm and the <math altimg=\"urn:x-wiley:oca:media:oca3085:oca3085-math-0002\" display=\"inline\" location=\"graphic/oca3085-math-0002.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<msup>\n<mrow>\n<mi>L</mi>\n</mrow>\n<mrow>\n<mn>0</mn>\n</mrow>\n</msup>\n</mrow>\n$$ {L}^0 $$</annotation>\n</semantics></math>-penalizer, which measures function support. We analyze discretized problems utilizing linear finite elements with a locking-free scheme to approximate the states and adjoint states. We confirm that this approximation has the looking-free property required to achieve a linear convergence linear order of approximation for <math altimg=\"urn:x-wiley:oca:media:oca3085:oca3085-math-0003\" display=\"inline\" location=\"graphic/oca3085-math-0003.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<msup>\n<mrow>\n<mi>L</mi>\n</mrow>\n<mrow>\n<mn>1</mn>\n</mrow>\n</msup>\n</mrow>\n$$ {L}^1 $$</annotation>\n</semantics></math> control case and depending on the set of switching points in the <math altimg=\"urn:x-wiley:oca:media:oca3085:oca3085-math-0004\" display=\"inline\" location=\"graphic/oca3085-math-0004.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<msup>\n<mrow>\n<mi>L</mi>\n</mrow>\n<mrow>\n<mn>0</mn>\n</mrow>\n</msup>\n</mrow>\n$$ {L}^0 $$</annotation>\n</semantics></math> controls. This is similar to the purely <math altimg=\"urn:x-wiley:oca:media:oca3085:oca3085-math-0005\" display=\"inline\" location=\"graphic/oca3085-math-0005.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<msup>\n<mrow>\n<mi>L</mi>\n</mrow>\n<mrow>\n<mn>2</mn>\n</mrow>\n</msup>\n</mrow>\n$$ {L}^2 $$</annotation>\n</semantics></math>-norm penalized optimal control, where the order of approximation is independent of the thickness of the beam.","PeriodicalId":501055,"journal":{"name":"Optimal Control Applications and Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse optimal control of Timoshenko's beam using a locking-free finite element approximation\",\"authors\":\"Erwin Hernández, Pedro Merino\",\"doi\":\"10.1002/oca.3085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the optimal control problem with sparse controls of a Timoshenko beam, its numerical approximation using the finite element method, and the numerical solution via nonsmooth methods. Incorporating sparsity-promoting terms in the cost function is practically useful for beam vibration models and results in the localization of the control action that facilitates the placement of actuators or control devices. We consider two types of sparsity-inducing penalizers: the <math altimg=\\\"urn:x-wiley:oca:media:oca3085:oca3085-math-0001\\\" display=\\\"inline\\\" location=\\\"graphic/oca3085-math-0001.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<msup>\\n<mrow>\\n<mi>L</mi>\\n</mrow>\\n<mrow>\\n<mn>1</mn>\\n</mrow>\\n</msup>\\n</mrow>\\n$$ {L}^1 $$</annotation>\\n</semantics></math>-norm and the <math altimg=\\\"urn:x-wiley:oca:media:oca3085:oca3085-math-0002\\\" display=\\\"inline\\\" location=\\\"graphic/oca3085-math-0002.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<msup>\\n<mrow>\\n<mi>L</mi>\\n</mrow>\\n<mrow>\\n<mn>0</mn>\\n</mrow>\\n</msup>\\n</mrow>\\n$$ {L}^0 $$</annotation>\\n</semantics></math>-penalizer, which measures function support. We analyze discretized problems utilizing linear finite elements with a locking-free scheme to approximate the states and adjoint states. We confirm that this approximation has the looking-free property required to achieve a linear convergence linear order of approximation for <math altimg=\\\"urn:x-wiley:oca:media:oca3085:oca3085-math-0003\\\" display=\\\"inline\\\" location=\\\"graphic/oca3085-math-0003.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<msup>\\n<mrow>\\n<mi>L</mi>\\n</mrow>\\n<mrow>\\n<mn>1</mn>\\n</mrow>\\n</msup>\\n</mrow>\\n$$ {L}^1 $$</annotation>\\n</semantics></math> control case and depending on the set of switching points in the <math altimg=\\\"urn:x-wiley:oca:media:oca3085:oca3085-math-0004\\\" display=\\\"inline\\\" location=\\\"graphic/oca3085-math-0004.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<msup>\\n<mrow>\\n<mi>L</mi>\\n</mrow>\\n<mrow>\\n<mn>0</mn>\\n</mrow>\\n</msup>\\n</mrow>\\n$$ {L}^0 $$</annotation>\\n</semantics></math> controls. This is similar to the purely <math altimg=\\\"urn:x-wiley:oca:media:oca3085:oca3085-math-0005\\\" display=\\\"inline\\\" location=\\\"graphic/oca3085-math-0005.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<msup>\\n<mrow>\\n<mi>L</mi>\\n</mrow>\\n<mrow>\\n<mn>2</mn>\\n</mrow>\\n</msup>\\n</mrow>\\n$$ {L}^2 $$</annotation>\\n</semantics></math>-norm penalized optimal control, where the order of approximation is independent of the thickness of the beam.\",\"PeriodicalId\":501055,\"journal\":{\"name\":\"Optimal Control Applications and Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimal Control Applications and Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/oca.3085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimal Control Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/oca.3085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sparse optimal control of Timoshenko's beam using a locking-free finite element approximation
This paper addresses the optimal control problem with sparse controls of a Timoshenko beam, its numerical approximation using the finite element method, and the numerical solution via nonsmooth methods. Incorporating sparsity-promoting terms in the cost function is practically useful for beam vibration models and results in the localization of the control action that facilitates the placement of actuators or control devices. We consider two types of sparsity-inducing penalizers: the -norm and the -penalizer, which measures function support. We analyze discretized problems utilizing linear finite elements with a locking-free scheme to approximate the states and adjoint states. We confirm that this approximation has the looking-free property required to achieve a linear convergence linear order of approximation for control case and depending on the set of switching points in the controls. This is similar to the purely -norm penalized optimal control, where the order of approximation is independent of the thickness of the beam.