生物合成纳米银与商用纳米银构筑生活污水消毒滤池的比较研究

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Taher, Heba S., Sayed, Rania, Loutfi, Asmaa, Abdulla, Hesham
{"title":"生物合成纳米银与商用纳米银构筑生活污水消毒滤池的比较研究","authors":"Taher, Heba S., Sayed, Rania, Loutfi, Asmaa, Abdulla, Hesham","doi":"10.1186/s13213-022-01688-2","DOIUrl":null,"url":null,"abstract":"Biosynthesis of nanoparticles is an eco-friendly process and considered one of the most significant aspects of nanotechnology. Silver nanoparticles (Ag NPs) have a better bactericidal activity due to its high surface area to volume ratio. In this paper, Streptomyces sp. U13 (KP109813) was used to biosynthesize silver nanoparticles (Ag NPs) to construct wastewater disinfection filter. The biosynthesized nanosilver and a commercially available ink nanosilver were characterized, and their wastewater disinfection efficiency was compared. The nanometrological characteristics of both nanosilver such as structure, shape, and size were investigated using the X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FTIR), high-resolution transmission electron microscope (HR-TEM), and UV-visible spectroscopy. The results revealed that the biosynthesized and ink Ag NPs were well dispersed and had a spherical shape, with sizes ranged from 5 to 37 nm and from 2 to 26 nm, respectively. To examine the disinfection capabilities, Ag NPs were loaded on two substrates, foam and limestone gravel, and packed into a glass column receiving domestic wastewater. Results showed that Ag NPs attached to limestone gravel eliminate 100% of the coliform bacteria better than foam. Comparing to control columns (without silver), only 50 and 10% reduction of the total coliform in gravel and foam column were achieved, respectively. This work concluded that the type of substrate controls the amount of Ag NPs loaded on it and thus controls the disinfection process. No significant difference between biosynthesized and ink nanosilver in wastewater disinfection was observed. Using limestone gravel filter loaded with 200 mg/l Ag NPs with contact time of 150 min achieves a complete eradication of coliform bacteria.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Construction of a domestic wastewater disinfection filter from biosynthesized and commercial nanosilver: a comparative study\",\"authors\":\"Taher, Heba S., Sayed, Rania, Loutfi, Asmaa, Abdulla, Hesham\",\"doi\":\"10.1186/s13213-022-01688-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biosynthesis of nanoparticles is an eco-friendly process and considered one of the most significant aspects of nanotechnology. Silver nanoparticles (Ag NPs) have a better bactericidal activity due to its high surface area to volume ratio. In this paper, Streptomyces sp. U13 (KP109813) was used to biosynthesize silver nanoparticles (Ag NPs) to construct wastewater disinfection filter. The biosynthesized nanosilver and a commercially available ink nanosilver were characterized, and their wastewater disinfection efficiency was compared. The nanometrological characteristics of both nanosilver such as structure, shape, and size were investigated using the X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FTIR), high-resolution transmission electron microscope (HR-TEM), and UV-visible spectroscopy. The results revealed that the biosynthesized and ink Ag NPs were well dispersed and had a spherical shape, with sizes ranged from 5 to 37 nm and from 2 to 26 nm, respectively. To examine the disinfection capabilities, Ag NPs were loaded on two substrates, foam and limestone gravel, and packed into a glass column receiving domestic wastewater. Results showed that Ag NPs attached to limestone gravel eliminate 100% of the coliform bacteria better than foam. Comparing to control columns (without silver), only 50 and 10% reduction of the total coliform in gravel and foam column were achieved, respectively. This work concluded that the type of substrate controls the amount of Ag NPs loaded on it and thus controls the disinfection process. No significant difference between biosynthesized and ink nanosilver in wastewater disinfection was observed. Using limestone gravel filter loaded with 200 mg/l Ag NPs with contact time of 150 min achieves a complete eradication of coliform bacteria.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13213-022-01688-2\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13213-022-01688-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

纳米粒子的生物合成是一种生态友好的过程,被认为是纳米技术最重要的方面之一。银纳米粒子具有较高的比表面积和体积比,具有较好的杀菌活性。本文以链霉菌U13 (KP109813)为原料,生物合成银纳米粒子(Ag NPs),构建废水消毒滤池。对生物合成的纳米银和市售的油墨纳米银进行了表征,并比较了它们对废水的消毒效果。采用x射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、高分辨率透射电子显微镜(hrtem)和紫外可见光谱对两种纳米银的结构、形状和尺寸等纳米计量学特征进行了研究。结果表明,生物合成的银纳米粒子和油墨银纳米粒子分散良好,呈球形,尺寸分别在5 ~ 37 nm和2 ~ 26 nm之间。为了检验消毒能力,研究人员将银纳米粒子装载在泡沫和石灰石碎石两种基质上,并将其装入一个接收生活废水的玻璃柱中。结果表明,与泡沫相比,附着在石灰石砾石上的Ag NPs对大肠菌群的去除率达到100%。与对照柱(不含银)相比,砾石柱和泡沫柱中大肠菌群总数分别减少了50%和10%。这项工作的结论是,底物的类型控制了负载在其上的银NPs的数量,从而控制了消毒过程。生物合成纳米银与油墨纳米银对废水的消毒效果无显著差异。石灰石砾石过滤器加载200 mg/l Ag NPs,接触时间为150 min,可完全根除大肠菌群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of a domestic wastewater disinfection filter from biosynthesized and commercial nanosilver: a comparative study
Biosynthesis of nanoparticles is an eco-friendly process and considered one of the most significant aspects of nanotechnology. Silver nanoparticles (Ag NPs) have a better bactericidal activity due to its high surface area to volume ratio. In this paper, Streptomyces sp. U13 (KP109813) was used to biosynthesize silver nanoparticles (Ag NPs) to construct wastewater disinfection filter. The biosynthesized nanosilver and a commercially available ink nanosilver were characterized, and their wastewater disinfection efficiency was compared. The nanometrological characteristics of both nanosilver such as structure, shape, and size were investigated using the X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FTIR), high-resolution transmission electron microscope (HR-TEM), and UV-visible spectroscopy. The results revealed that the biosynthesized and ink Ag NPs were well dispersed and had a spherical shape, with sizes ranged from 5 to 37 nm and from 2 to 26 nm, respectively. To examine the disinfection capabilities, Ag NPs were loaded on two substrates, foam and limestone gravel, and packed into a glass column receiving domestic wastewater. Results showed that Ag NPs attached to limestone gravel eliminate 100% of the coliform bacteria better than foam. Comparing to control columns (without silver), only 50 and 10% reduction of the total coliform in gravel and foam column were achieved, respectively. This work concluded that the type of substrate controls the amount of Ag NPs loaded on it and thus controls the disinfection process. No significant difference between biosynthesized and ink nanosilver in wastewater disinfection was observed. Using limestone gravel filter loaded with 200 mg/l Ag NPs with contact time of 150 min achieves a complete eradication of coliform bacteria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信