具有不可忽略缺失数据的半参数加速失效时间模型的变量选择

IF 0.6 4区 数学 Q4 STATISTICS & PROBABILITY
Tianqing Liu, Xiaohui Yuan, Liuquan Sun
{"title":"具有不可忽略缺失数据的半参数加速失效时间模型的变量选择","authors":"Tianqing Liu, Xiaohui Yuan, Liuquan Sun","doi":"10.1007/s42952-023-00238-z","DOIUrl":null,"url":null,"abstract":"<p>The regularization approach for variable selection was well developed for semiparametric accelerated failure time (AFT) models, where the response variable is right censored. In the presence of missing data, this approach needs to be tailored to different missing data mechanisms. In this paper, we propose a flexible and generally applicable missing data mechanism for AFT models, which contains both ignorable and nonignorable missing data mechanism assumptions. We propose weighted rank (WR) estimators and corresponding penalized estimators of regression parameters under this missing data mechanism. An advantage of the WR estimators and corresponding penalized estimators is that they do not require specifying a missing data model for the proposed missing data mechanism. The theoretical properties of the WR and corresponding penalized estimators are established. Comprehensive simulation studies and a real data application further demonstrate the merits of our approach.</p>","PeriodicalId":49992,"journal":{"name":"Journal of the Korean Statistical Society","volume":"26 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variable selection for semiparametric accelerated failure time models with nonignorable missing data\",\"authors\":\"Tianqing Liu, Xiaohui Yuan, Liuquan Sun\",\"doi\":\"10.1007/s42952-023-00238-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The regularization approach for variable selection was well developed for semiparametric accelerated failure time (AFT) models, where the response variable is right censored. In the presence of missing data, this approach needs to be tailored to different missing data mechanisms. In this paper, we propose a flexible and generally applicable missing data mechanism for AFT models, which contains both ignorable and nonignorable missing data mechanism assumptions. We propose weighted rank (WR) estimators and corresponding penalized estimators of regression parameters under this missing data mechanism. An advantage of the WR estimators and corresponding penalized estimators is that they do not require specifying a missing data model for the proposed missing data mechanism. The theoretical properties of the WR and corresponding penalized estimators are established. Comprehensive simulation studies and a real data application further demonstrate the merits of our approach.</p>\",\"PeriodicalId\":49992,\"journal\":{\"name\":\"Journal of the Korean Statistical Society\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Statistical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s42952-023-00238-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Statistical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s42952-023-00238-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

针对半参数加速失效时间(AFT)模型,提出了一种正则化的变量选择方法。在存在缺失数据的情况下,这种方法需要针对不同的缺失数据机制进行调整。在本文中,我们提出了一种灵活且普遍适用的AFT模型缺失数据机制,该机制包含可忽略和不可忽略的缺失数据机制假设。在这种缺失数据机制下,我们提出了加权秩估计和相应的惩罚估计。WR估计器和相应的惩罚估计器的一个优点是,它们不需要为提议的缺失数据机制指定缺失数据模型。建立了WR的理论性质和相应的惩罚估计量。综合仿真研究和实际数据应用进一步证明了该方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variable selection for semiparametric accelerated failure time models with nonignorable missing data

The regularization approach for variable selection was well developed for semiparametric accelerated failure time (AFT) models, where the response variable is right censored. In the presence of missing data, this approach needs to be tailored to different missing data mechanisms. In this paper, we propose a flexible and generally applicable missing data mechanism for AFT models, which contains both ignorable and nonignorable missing data mechanism assumptions. We propose weighted rank (WR) estimators and corresponding penalized estimators of regression parameters under this missing data mechanism. An advantage of the WR estimators and corresponding penalized estimators is that they do not require specifying a missing data model for the proposed missing data mechanism. The theoretical properties of the WR and corresponding penalized estimators are established. Comprehensive simulation studies and a real data application further demonstrate the merits of our approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Korean Statistical Society
Journal of the Korean Statistical Society 数学-统计学与概率论
CiteScore
1.30
自引率
0.00%
发文量
37
审稿时长
3 months
期刊介绍: The Journal of the Korean Statistical Society publishes research articles that make original contributions to the theory and methodology of statistics and probability. It also welcomes papers on innovative applications of statistical methodology, as well as papers that give an overview of current topic of statistical research with judgements about promising directions for future work. The journal welcomes contributions from all countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信