{"title":"具有组合抽象的监督控制上下文中的分层规划","authors":"Vilela, Juliana, Hill, Richard","doi":"10.1007/s10626-021-00349-x","DOIUrl":null,"url":null,"abstract":"<p>Hierarchy is a tool that has been applied to improve the scalability of solving planning problems modeled using Supervisory Control Theory. In the work of Hill and Lafortune (2016), the notion of <i>cost equivalence</i> was employed to generate an abstraction of the supervisor that, with additional conditions, guarantees that an optimal plan generated on the abstraction is also optimal when applied to the full supervisor. Their work is able to improve their abstraction by artificially giving transitions zero cost based on the sequentially-dependent ordering of events. Here, we relax the requirement on a specific ordering of the dependent events, while maintaining the optimal relationship between upper and lower levels of the hierarchy. This present paper also extends the authors’ work (Vilela and Hill 2020) where we developed a new notion of equivalence based on cost equivalence and weak bisimulation that we term <i>priced-observation equivalence</i>. This equivalence allows the supervisor abstraction to be generated compositionally. This helps to avoid the explosion of the state space that arises from having to first synthesize the full supervisor before the abstraction can be applied. Here, we also show that models with artificial zero-cost transitions can be created compositionally employing the new relaxed sequential dependence definition. An example cooperative robot control application is used to demonstrate the improvements achieved by the compositional approach to abstraction proposed by this paper.</p>","PeriodicalId":92890,"journal":{"name":"Discrete event dynamic systems","volume":"25 53","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hierarchical planning in a supervisory control context with compositional abstraction\",\"authors\":\"Vilela, Juliana, Hill, Richard\",\"doi\":\"10.1007/s10626-021-00349-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hierarchy is a tool that has been applied to improve the scalability of solving planning problems modeled using Supervisory Control Theory. In the work of Hill and Lafortune (2016), the notion of <i>cost equivalence</i> was employed to generate an abstraction of the supervisor that, with additional conditions, guarantees that an optimal plan generated on the abstraction is also optimal when applied to the full supervisor. Their work is able to improve their abstraction by artificially giving transitions zero cost based on the sequentially-dependent ordering of events. Here, we relax the requirement on a specific ordering of the dependent events, while maintaining the optimal relationship between upper and lower levels of the hierarchy. This present paper also extends the authors’ work (Vilela and Hill 2020) where we developed a new notion of equivalence based on cost equivalence and weak bisimulation that we term <i>priced-observation equivalence</i>. This equivalence allows the supervisor abstraction to be generated compositionally. This helps to avoid the explosion of the state space that arises from having to first synthesize the full supervisor before the abstraction can be applied. Here, we also show that models with artificial zero-cost transitions can be created compositionally employing the new relaxed sequential dependence definition. An example cooperative robot control application is used to demonstrate the improvements achieved by the compositional approach to abstraction proposed by this paper.</p>\",\"PeriodicalId\":92890,\"journal\":{\"name\":\"Discrete event dynamic systems\",\"volume\":\"25 53\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete event dynamic systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10626-021-00349-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete event dynamic systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10626-021-00349-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hierarchical planning in a supervisory control context with compositional abstraction
Hierarchy is a tool that has been applied to improve the scalability of solving planning problems modeled using Supervisory Control Theory. In the work of Hill and Lafortune (2016), the notion of cost equivalence was employed to generate an abstraction of the supervisor that, with additional conditions, guarantees that an optimal plan generated on the abstraction is also optimal when applied to the full supervisor. Their work is able to improve their abstraction by artificially giving transitions zero cost based on the sequentially-dependent ordering of events. Here, we relax the requirement on a specific ordering of the dependent events, while maintaining the optimal relationship between upper and lower levels of the hierarchy. This present paper also extends the authors’ work (Vilela and Hill 2020) where we developed a new notion of equivalence based on cost equivalence and weak bisimulation that we term priced-observation equivalence. This equivalence allows the supervisor abstraction to be generated compositionally. This helps to avoid the explosion of the state space that arises from having to first synthesize the full supervisor before the abstraction can be applied. Here, we also show that models with artificial zero-cost transitions can be created compositionally employing the new relaxed sequential dependence definition. An example cooperative robot control application is used to demonstrate the improvements achieved by the compositional approach to abstraction proposed by this paper.