薄集的附加补全

IF 0.6 4区 数学 Q3 MATHEMATICS
JIN-HUI FANG, CSABA SÁNDOR
{"title":"薄集的附加补全","authors":"JIN-HUI FANG, CSABA SÁNDOR","doi":"10.1017/s0004972723001016","DOIUrl":null,"url":null,"abstract":"Two sets <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001016_inline1.png\" /> <jats:tex-math> $A,B$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of positive integers are called <jats:italic>exact additive complements</jats:italic> if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001016_inline2.png\" /> <jats:tex-math> $A+B$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> contains all sufficiently large integers and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001016_inline3.png\" /> <jats:tex-math> $A(x)B(x)/x\\rightarrow 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. For <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001016_inline4.png\" /> <jats:tex-math> $A=\\{a_1&lt;a_2&lt;\\cdots \\}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001016_inline5.png\" /> <jats:tex-math> $A(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the counting function of <jats:italic>A</jats:italic> and let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001016_inline6.png\" /> <jats:tex-math> $a^*(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the largest element in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001016_inline7.png\" /> <jats:tex-math> $A\\bigcap [1,x]$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Following the work of Ruzsa [‘Exact additive complements’, <jats:italic>Quart. J. Math.</jats:italic>68 (2017) 227–235] and Chen and Fang [‘Additive complements with Narkiewicz’s condition’, <jats:italic>Combinatorica</jats:italic>39 (2019), 813–823], we prove that, for exact additive complements <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001016_inline8.png\" /> <jats:tex-math> $A,B$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001016_inline9.png\" /> <jats:tex-math> ${a_{n+1}}/ {na_n}\\rightarrow \\infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001016_eqnu1.png\" /> <jats:tex-math> $$ \\begin{align*}A(x)B(x)-x\\geqslant \\frac{a^*(x)}{A(x)}+o\\bigg(\\frac{a^*(x)}{A(x)^2}\\bigg) \\quad\\mbox{as } x\\rightarrow +\\infty.\\end{align*} $$ </jats:tex-math> </jats:alternatives> </jats:disp-formula> We also construct exact additive complements <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001016_inline10.png\" /> <jats:tex-math> $A,B$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001016_inline11.png\" /> <jats:tex-math> ${a_{n+1}}/{na_n}\\rightarrow \\infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001016_eqnu2.png\" /> <jats:tex-math> $$ \\begin{align*}A(x)B(x)-x\\leqslant \\frac{a^*(x)}{A(x)}+(1+o(1))\\bigg(\\frac{a^*(x)}{A(x)^2}\\bigg)\\end{align*} $$ </jats:tex-math> </jats:alternatives> </jats:disp-formula> for infinitely many positive integers <jats:italic>x</jats:italic>.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ADDITIVE COMPLETION OF THIN SETS\",\"authors\":\"JIN-HUI FANG, CSABA SÁNDOR\",\"doi\":\"10.1017/s0004972723001016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two sets <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001016_inline1.png\\\" /> <jats:tex-math> $A,B$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of positive integers are called <jats:italic>exact additive complements</jats:italic> if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001016_inline2.png\\\" /> <jats:tex-math> $A+B$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> contains all sufficiently large integers and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001016_inline3.png\\\" /> <jats:tex-math> $A(x)B(x)/x\\\\rightarrow 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. For <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001016_inline4.png\\\" /> <jats:tex-math> $A=\\\\{a_1&lt;a_2&lt;\\\\cdots \\\\}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001016_inline5.png\\\" /> <jats:tex-math> $A(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the counting function of <jats:italic>A</jats:italic> and let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001016_inline6.png\\\" /> <jats:tex-math> $a^*(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denote the largest element in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001016_inline7.png\\\" /> <jats:tex-math> $A\\\\bigcap [1,x]$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Following the work of Ruzsa [‘Exact additive complements’, <jats:italic>Quart. J. Math.</jats:italic>68 (2017) 227–235] and Chen and Fang [‘Additive complements with Narkiewicz’s condition’, <jats:italic>Combinatorica</jats:italic>39 (2019), 813–823], we prove that, for exact additive complements <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001016_inline8.png\\\" /> <jats:tex-math> $A,B$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001016_inline9.png\\\" /> <jats:tex-math> ${a_{n+1}}/ {na_n}\\\\rightarrow \\\\infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001016_eqnu1.png\\\" /> <jats:tex-math> $$ \\\\begin{align*}A(x)B(x)-x\\\\geqslant \\\\frac{a^*(x)}{A(x)}+o\\\\bigg(\\\\frac{a^*(x)}{A(x)^2}\\\\bigg) \\\\quad\\\\mbox{as } x\\\\rightarrow +\\\\infty.\\\\end{align*} $$ </jats:tex-math> </jats:alternatives> </jats:disp-formula> We also construct exact additive complements <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001016_inline10.png\\\" /> <jats:tex-math> $A,B$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001016_inline11.png\\\" /> <jats:tex-math> ${a_{n+1}}/{na_n}\\\\rightarrow \\\\infty $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001016_eqnu2.png\\\" /> <jats:tex-math> $$ \\\\begin{align*}A(x)B(x)-x\\\\leqslant \\\\frac{a^*(x)}{A(x)}+(1+o(1))\\\\bigg(\\\\frac{a^*(x)}{A(x)^2}\\\\bigg)\\\\end{align*} $$ </jats:tex-math> </jats:alternatives> </jats:disp-formula> for infinitely many positive integers <jats:italic>x</jats:italic>.\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972723001016\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972723001016","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果$A+B$包含所有足够大的整数和$A(x)B(x)/x\rightarrow 1$,则两个正整数集$A,B$称为精确可加补。对于$A=\{a_1<a_2<\cdots \}$,设$A(x)$表示A的计数函数,设$a^*(x)$表示$A\bigcap [1,x]$中最大的元素。遵循Ruzsa的工作[精确加法补语],夸脱。J. Math.68(2017) 227-235]和Chen and Fang [' Narkiewicz条件下的可加补数',Combinatorica39(2019), 813-823],我们证明了,对于精确可加补数$A,B$用${a_{n+1}}/ {na_n}\rightarrow \infty $, $$ \begin{align*}A(x)B(x)-x\geqslant \frac{a^*(x)}{A(x)}+o\bigg(\frac{a^*(x)}{A(x)^2}\bigg) \quad\mbox{as } x\rightarrow +\infty.\end{align*} $$,我们也用${a_{n+1}}/{na_n}\rightarrow \infty $构造精确可加补数$A,B$,使得$$ \begin{align*}A(x)B(x)-x\leqslant \frac{a^*(x)}{A(x)}+(1+o(1))\bigg(\frac{a^*(x)}{A(x)^2}\bigg)\end{align*} $$对于无穷多个正整数x。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ADDITIVE COMPLETION OF THIN SETS
Two sets $A,B$ of positive integers are called exact additive complements if $A+B$ contains all sufficiently large integers and $A(x)B(x)/x\rightarrow 1$ . For $A=\{a_1<a_2<\cdots \}$ , let $A(x)$ denote the counting function of A and let $a^*(x)$ denote the largest element in $A\bigcap [1,x]$ . Following the work of Ruzsa [‘Exact additive complements’, Quart. J. Math.68 (2017) 227–235] and Chen and Fang [‘Additive complements with Narkiewicz’s condition’, Combinatorica39 (2019), 813–823], we prove that, for exact additive complements $A,B$ with ${a_{n+1}}/ {na_n}\rightarrow \infty $ , $$ \begin{align*}A(x)B(x)-x\geqslant \frac{a^*(x)}{A(x)}+o\bigg(\frac{a^*(x)}{A(x)^2}\bigg) \quad\mbox{as } x\rightarrow +\infty.\end{align*} $$ We also construct exact additive complements $A,B$ with ${a_{n+1}}/{na_n}\rightarrow \infty $ such that $$ \begin{align*}A(x)B(x)-x\leqslant \frac{a^*(x)}{A(x)}+(1+o(1))\bigg(\frac{a^*(x)}{A(x)^2}\bigg)\end{align*} $$ for infinitely many positive integers x.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
149
审稿时长
4-8 weeks
期刊介绍: Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信