论lenny Jones关于某些单基因多项式的猜想

IF 0.6 4区 数学 Q3 MATHEMATICS
SUMANDEEP KAUR, SURENDER KUMAR
{"title":"论lenny Jones关于某些单基因多项式的猜想","authors":"SUMANDEEP KAUR, SURENDER KUMAR","doi":"10.1017/s0004972723001119","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001119_inline1.png\" /> <jats:tex-math> $K={\\mathbb {Q}}(\\theta )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be an algebraic number field with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001119_inline2.png\" /> <jats:tex-math> $\\theta $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfying a monic irreducible polynomial <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001119_inline3.png\" /> <jats:tex-math> $f(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of degree <jats:italic>n</jats:italic> over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001119_inline4.png\" /> <jats:tex-math> ${\\mathbb {Q}}.$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> The polynomial <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001119_inline5.png\" /> <jats:tex-math> $f(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is said to be monogenic if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001119_inline6.png\" /> <jats:tex-math> $\\{1,\\theta ,\\ldots ,\\theta ^{n-1}\\}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is an integral basis of <jats:italic>K</jats:italic>. Deciding whether or not a monic irreducible polynomial is monogenic is an important problem in algebraic number theory. In an attempt to answer this problem for a certain family of polynomials, Jones [‘A brief note on some infinite families of monogenic polynomials’, <jats:italic>Bull. Aust. Math. Soc.</jats:italic>100 (2019), 239–244] conjectured that if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001119_inline7.png\" /> <jats:tex-math> $n\\ge 3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001119_inline8.png\" /> <jats:tex-math> $1\\le m\\le n-1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001119_inline9.png\" /> <jats:tex-math> $\\gcd (n,mB)=1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:italic>A</jats:italic> is a prime number, then the polynomial <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001119_inline10.png\" /> <jats:tex-math> $x^n+A (Bx+1)^m\\in {\\mathbb {Z}}[x]$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is monogenic if and only if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001119_inline11.png\" /> <jats:tex-math> $n^n+(-1)^{n+m}B^n(n-m)^{n-m}m^mA$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is square-free. We prove that this conjecture is true.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"220 3","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON A CONJECTURE OF LENNY JONES ABOUT CERTAIN MONOGENIC POLYNOMIALS\",\"authors\":\"SUMANDEEP KAUR, SURENDER KUMAR\",\"doi\":\"10.1017/s0004972723001119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001119_inline1.png\\\" /> <jats:tex-math> $K={\\\\mathbb {Q}}(\\\\theta )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be an algebraic number field with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001119_inline2.png\\\" /> <jats:tex-math> $\\\\theta $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfying a monic irreducible polynomial <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001119_inline3.png\\\" /> <jats:tex-math> $f(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of degree <jats:italic>n</jats:italic> over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001119_inline4.png\\\" /> <jats:tex-math> ${\\\\mathbb {Q}}.$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> The polynomial <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001119_inline5.png\\\" /> <jats:tex-math> $f(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is said to be monogenic if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001119_inline6.png\\\" /> <jats:tex-math> $\\\\{1,\\\\theta ,\\\\ldots ,\\\\theta ^{n-1}\\\\}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is an integral basis of <jats:italic>K</jats:italic>. Deciding whether or not a monic irreducible polynomial is monogenic is an important problem in algebraic number theory. In an attempt to answer this problem for a certain family of polynomials, Jones [‘A brief note on some infinite families of monogenic polynomials’, <jats:italic>Bull. Aust. Math. Soc.</jats:italic>100 (2019), 239–244] conjectured that if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001119_inline7.png\\\" /> <jats:tex-math> $n\\\\ge 3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001119_inline8.png\\\" /> <jats:tex-math> $1\\\\le m\\\\le n-1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001119_inline9.png\\\" /> <jats:tex-math> $\\\\gcd (n,mB)=1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:italic>A</jats:italic> is a prime number, then the polynomial <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001119_inline10.png\\\" /> <jats:tex-math> $x^n+A (Bx+1)^m\\\\in {\\\\mathbb {Z}}[x]$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is monogenic if and only if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001119_inline11.png\\\" /> <jats:tex-math> $n^n+(-1)^{n+m}B^n(n-m)^{n-m}m^mA$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is square-free. We prove that this conjecture is true.\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\"220 3\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972723001119\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972723001119","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设$K={\mathbb {Q}}(\theta )$为一个代数数域,其$\theta $满足一个n / ${\mathbb {Q}}.$次的单不可约多项式$f(x)$,如果$\{1,\theta ,\ldots ,\theta ^{n-1}\}$是k的积分基,则多项式$f(x)$是单性的。判定一个单不可约多项式是否为单性是代数数论中的一个重要问题。为了尝试对某一族多项式回答这个问题,Jones [a brief note on some infinite族of monogenic polynomial], Bull。是的。数学。Soc.100(2019), 239-244]推测,如果$n\ge 3$, $1\le m\le n-1$, $\gcd (n,mB)=1$和A是素数,则多项式$x^n+A (Bx+1)^m\in {\mathbb {Z}}[x]$是单基因的当且仅当$n^n+(-1)^{n+m}B^n(n-m)^{n-m}m^mA$是无平方的。我们证明这个猜想是正确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON A CONJECTURE OF LENNY JONES ABOUT CERTAIN MONOGENIC POLYNOMIALS
Let $K={\mathbb {Q}}(\theta )$ be an algebraic number field with $\theta $ satisfying a monic irreducible polynomial $f(x)$ of degree n over ${\mathbb {Q}}.$ The polynomial $f(x)$ is said to be monogenic if $\{1,\theta ,\ldots ,\theta ^{n-1}\}$ is an integral basis of K. Deciding whether or not a monic irreducible polynomial is monogenic is an important problem in algebraic number theory. In an attempt to answer this problem for a certain family of polynomials, Jones [‘A brief note on some infinite families of monogenic polynomials’, Bull. Aust. Math. Soc.100 (2019), 239–244] conjectured that if $n\ge 3$ , $1\le m\le n-1$ , $\gcd (n,mB)=1$ and A is a prime number, then the polynomial $x^n+A (Bx+1)^m\in {\mathbb {Z}}[x]$ is monogenic if and only if $n^n+(-1)^{n+m}B^n(n-m)^{n-m}m^mA$ is square-free. We prove that this conjecture is true.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
149
审稿时长
4-8 weeks
期刊介绍: Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信