对椭圆均匀化的另一个看法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Andrea Braides, Giuseppe Cosma Brusca, Davide Donati
{"title":"对椭圆均匀化的另一个看法","authors":"Andrea Braides, Giuseppe Cosma Brusca, Davide Donati","doi":"10.1007/s00032-023-00389-y","DOIUrl":null,"url":null,"abstract":"<p>We consider the limit of sequences of normalized (<i>s</i>, 2)-Gagliardo seminorms with an oscillating coefficient as <span>\\(s\\rightarrow 1\\)</span>. In a seminal paper by Bourgain et al. (Another look at Sobolev spaces. In: Optimal control and partial differential equations. IOS, Amsterdam, pp 439–455, 2001) it is proven that if the coefficient is constant then this sequence <span>\\(\\Gamma \\)</span>-converges to a multiple of the Dirichlet integral. Here we prove that, if we denote by <span>\\(\\varepsilon \\)</span> the scale of the oscillations and we assume that <span>\\(1-s&lt;\\!&lt;\\varepsilon ^2\\)</span>, this sequence converges to the homogenized functional formally obtained by separating the effects of <i>s</i> and <span>\\(\\varepsilon \\)</span>; that is, by the homogenization as <span>\\(\\varepsilon \\rightarrow 0\\)</span> of the Dirichlet integral with oscillating coefficient obtained by formally letting <span>\\(s\\rightarrow 1\\)</span> first.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Another Look at Elliptic Homogenization\",\"authors\":\"Andrea Braides, Giuseppe Cosma Brusca, Davide Donati\",\"doi\":\"10.1007/s00032-023-00389-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the limit of sequences of normalized (<i>s</i>, 2)-Gagliardo seminorms with an oscillating coefficient as <span>\\\\(s\\\\rightarrow 1\\\\)</span>. In a seminal paper by Bourgain et al. (Another look at Sobolev spaces. In: Optimal control and partial differential equations. IOS, Amsterdam, pp 439–455, 2001) it is proven that if the coefficient is constant then this sequence <span>\\\\(\\\\Gamma \\\\)</span>-converges to a multiple of the Dirichlet integral. Here we prove that, if we denote by <span>\\\\(\\\\varepsilon \\\\)</span> the scale of the oscillations and we assume that <span>\\\\(1-s&lt;\\\\!&lt;\\\\varepsilon ^2\\\\)</span>, this sequence converges to the homogenized functional formally obtained by separating the effects of <i>s</i> and <span>\\\\(\\\\varepsilon \\\\)</span>; that is, by the homogenization as <span>\\\\(\\\\varepsilon \\\\rightarrow 0\\\\)</span> of the Dirichlet integral with oscillating coefficient obtained by formally letting <span>\\\\(s\\\\rightarrow 1\\\\)</span> first.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00032-023-00389-y\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00032-023-00389-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑具有振荡系数的归一化(s, 2)-Gagliardo半模序列的极限为\(s\rightarrow 1\)。在布尔甘等人的一篇开创性论文中(另一种对索博列夫空间的看法)。内:最优控制和偏微分方程。IOS, Amsterdam, pp 439-455, 2001)证明了如果系数是常数,那么这个数列\(\Gamma \) -收敛于Dirichlet积分的一个倍数。这里我们证明了,如果我们用\(\varepsilon \)表示振荡的尺度并且我们假设\(1-s<\!<\varepsilon ^2\),这个序列收敛于通过分离s和\(\varepsilon \)的影响而得到的形式的均匀泛函;即将形式上先让\(s\rightarrow 1\)得到的带振荡系数的狄利克雷积分均化为\(\varepsilon \rightarrow 0\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Another Look at Elliptic Homogenization

We consider the limit of sequences of normalized (s, 2)-Gagliardo seminorms with an oscillating coefficient as \(s\rightarrow 1\). In a seminal paper by Bourgain et al. (Another look at Sobolev spaces. In: Optimal control and partial differential equations. IOS, Amsterdam, pp 439–455, 2001) it is proven that if the coefficient is constant then this sequence \(\Gamma \)-converges to a multiple of the Dirichlet integral. Here we prove that, if we denote by \(\varepsilon \) the scale of the oscillations and we assume that \(1-s<\!<\varepsilon ^2\), this sequence converges to the homogenized functional formally obtained by separating the effects of s and \(\varepsilon \); that is, by the homogenization as \(\varepsilon \rightarrow 0\) of the Dirichlet integral with oscillating coefficient obtained by formally letting \(s\rightarrow 1\) first.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信