{"title":"颤振子表示的角条件和矩映射","authors":"Velleda Baldoni, Michèle Vergne, Michael Walter","doi":"10.4310/pamq.2023.v19.n4.a1","DOIUrl":null,"url":null,"abstract":"We give inductive conditions that characterize the Schubert positions of subrepresentations of a general quiver representation. Our results generalize Belkale’s criterion for the intersection of Schubert varieties in Grassmannians and refine Schofield’s characterization of the dimension vectors of general subrepresentations. This implies Horn type inequalities for the moment cone associated to the linear representation of the group $G = \\prod_x \\mathrm{GL}(n_x)$ associated to a quiver and a dimension vector $n = (n_x)$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Horn conditions for quiver subrepresentations and the moment map\",\"authors\":\"Velleda Baldoni, Michèle Vergne, Michael Walter\",\"doi\":\"10.4310/pamq.2023.v19.n4.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give inductive conditions that characterize the Schubert positions of subrepresentations of a general quiver representation. Our results generalize Belkale’s criterion for the intersection of Schubert varieties in Grassmannians and refine Schofield’s characterization of the dimension vectors of general subrepresentations. This implies Horn type inequalities for the moment cone associated to the linear representation of the group $G = \\\\prod_x \\\\mathrm{GL}(n_x)$ associated to a quiver and a dimension vector $n = (n_x)$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/pamq.2023.v19.n4.a1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2023.v19.n4.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Horn conditions for quiver subrepresentations and the moment map
We give inductive conditions that characterize the Schubert positions of subrepresentations of a general quiver representation. Our results generalize Belkale’s criterion for the intersection of Schubert varieties in Grassmannians and refine Schofield’s characterization of the dimension vectors of general subrepresentations. This implies Horn type inequalities for the moment cone associated to the linear representation of the group $G = \prod_x \mathrm{GL}(n_x)$ associated to a quiver and a dimension vector $n = (n_x)$.