Christian Blohmann, Michele Schiavina, Alan Weinstein
{"title":"广义相对论中的李-莱因哈特代数","authors":"Christian Blohmann, Michele Schiavina, Alan Weinstein","doi":"10.4310/pamq.2023.v19.n4.a2","DOIUrl":null,"url":null,"abstract":"We construct a Lie–Rinehart algebra over an infinitesimal extension of the space of initial value fields for Einstein’s equations. The bracket relations in this algebra are precisely those of the constraints for the initial value problem. The Lie–Rinehart algebra comes from a slight generalization of a Lie algebroid in which the algebra consists of sections of a sheaf rather than a vector bundle. (An actual Lie algebroid had been previously constructed by Blohmann, Fernandes, and Weinstein over a much larger extension.) The construction uses the BV–BFV (Batalin–Fradkin–Vilkovisky) approach to boundary value problems, starting with the Einstein equations themselves, to construct an $L_\\infty$-algebroid over a graded manifold which extends the initial data. The Lie–Rinehart algebra is then constructed by a change of variables. One of the consequences of the BV–BFV approach is a proof that the coisotropic property of the constraint set follows from the invariance of the Einstein equations under space-time diffeomorphisms.","PeriodicalId":54526,"journal":{"name":"Pure and Applied Mathematics Quarterly","volume":"193 3","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Lie–Rinehart algebra in general relativity\",\"authors\":\"Christian Blohmann, Michele Schiavina, Alan Weinstein\",\"doi\":\"10.4310/pamq.2023.v19.n4.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a Lie–Rinehart algebra over an infinitesimal extension of the space of initial value fields for Einstein’s equations. The bracket relations in this algebra are precisely those of the constraints for the initial value problem. The Lie–Rinehart algebra comes from a slight generalization of a Lie algebroid in which the algebra consists of sections of a sheaf rather than a vector bundle. (An actual Lie algebroid had been previously constructed by Blohmann, Fernandes, and Weinstein over a much larger extension.) The construction uses the BV–BFV (Batalin–Fradkin–Vilkovisky) approach to boundary value problems, starting with the Einstein equations themselves, to construct an $L_\\\\infty$-algebroid over a graded manifold which extends the initial data. The Lie–Rinehart algebra is then constructed by a change of variables. One of the consequences of the BV–BFV approach is a proof that the coisotropic property of the constraint set follows from the invariance of the Einstein equations under space-time diffeomorphisms.\",\"PeriodicalId\":54526,\"journal\":{\"name\":\"Pure and Applied Mathematics Quarterly\",\"volume\":\"193 3\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pure and Applied Mathematics Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/pamq.2023.v19.n4.a2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Mathematics Quarterly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2023.v19.n4.a2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
We construct a Lie–Rinehart algebra over an infinitesimal extension of the space of initial value fields for Einstein’s equations. The bracket relations in this algebra are precisely those of the constraints for the initial value problem. The Lie–Rinehart algebra comes from a slight generalization of a Lie algebroid in which the algebra consists of sections of a sheaf rather than a vector bundle. (An actual Lie algebroid had been previously constructed by Blohmann, Fernandes, and Weinstein over a much larger extension.) The construction uses the BV–BFV (Batalin–Fradkin–Vilkovisky) approach to boundary value problems, starting with the Einstein equations themselves, to construct an $L_\infty$-algebroid over a graded manifold which extends the initial data. The Lie–Rinehart algebra is then constructed by a change of variables. One of the consequences of the BV–BFV approach is a proof that the coisotropic property of the constraint set follows from the invariance of the Einstein equations under space-time diffeomorphisms.
期刊介绍:
Publishes high-quality, original papers on all fields of mathematics. To facilitate fruitful interchanges between mathematicians from different regions and specialties, and to effectively disseminate new breakthroughs in mathematics, the journal welcomes well-written submissions from all significant areas of mathematics. The editors are committed to promoting the highest quality of mathematical scholarship.