{"title":"Dedekind sums via Atiyah–Bott–Lefschetz","authors":"Ana Cannas da Silva","doi":"10.4310/pamq.2023.v19.n4.a3","DOIUrl":null,"url":null,"abstract":"This paper, written for differential geometers, shows how to deduce the reciprocity laws of Dedekind and Rademacher, as well as $n$-dimensional generalizations of these, from the Atiyah–Bott–Lefschetz formula, by applying this formula to appropriate elliptic complexes on weighted projective spaces.","PeriodicalId":54526,"journal":{"name":"Pure and Applied Mathematics Quarterly","volume":"194 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Mathematics Quarterly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2023.v19.n4.a3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
This paper, written for differential geometers, shows how to deduce the reciprocity laws of Dedekind and Rademacher, as well as $n$-dimensional generalizations of these, from the Atiyah–Bott–Lefschetz formula, by applying this formula to appropriate elliptic complexes on weighted projective spaces.
期刊介绍:
Publishes high-quality, original papers on all fields of mathematics. To facilitate fruitful interchanges between mathematicians from different regions and specialties, and to effectively disseminate new breakthroughs in mathematics, the journal welcomes well-written submissions from all significant areas of mathematics. The editors are committed to promoting the highest quality of mathematical scholarship.