{"title":"三维接触流形的经典力学和量子力学","authors":"Yves Colin de Verdière","doi":"10.4310/pamq.2023.v19.n4.a5","DOIUrl":null,"url":null,"abstract":"In this survey paper, I describe some aspects of the dynamics and the spectral theory of sub-Riemannian 3D contact manifolds. We use Toeplitz quantization of the characteristic cone as introduced by Louis Boutet de Monvel and Victor Guillemin. We also discuss trace formulae following our work as well as the Duistermaat–Guillemin trace formula.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classical and Quantum mechanics on 3D contact manifolds\",\"authors\":\"Yves Colin de Verdière\",\"doi\":\"10.4310/pamq.2023.v19.n4.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this survey paper, I describe some aspects of the dynamics and the spectral theory of sub-Riemannian 3D contact manifolds. We use Toeplitz quantization of the characteristic cone as introduced by Louis Boutet de Monvel and Victor Guillemin. We also discuss trace formulae following our work as well as the Duistermaat–Guillemin trace formula.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/pamq.2023.v19.n4.a5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2023.v19.n4.a5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在这篇综述论文中,我描述了亚黎曼三维接触流形的动力学和谱理论的一些方面。我们使用了由Louis Boutet de Monvel和Victor Guillemin引入的特征锥的Toeplitz量化。我们还讨论了我们工作之后的示踪公式以及Duistermaat-Guillemin示踪公式。
Classical and Quantum mechanics on 3D contact manifolds
In this survey paper, I describe some aspects of the dynamics and the spectral theory of sub-Riemannian 3D contact manifolds. We use Toeplitz quantization of the characteristic cone as introduced by Louis Boutet de Monvel and Victor Guillemin. We also discuss trace formulae following our work as well as the Duistermaat–Guillemin trace formula.