{"title":"辛几何流","authors":"Teng Fei, Duong H. Phong","doi":"10.4310/pamq.2023.v19.n4.a6","DOIUrl":null,"url":null,"abstract":"Several geometric flows on symplectic manifolds are introduced which are potentially of interest in symplectic geometry and topology. They are motivated by the Type IIA flow and T‑duality between flows in symplectic geometry and flows in complex geometry. Examples include the Hitchin gradient flow on symplectic manifolds, and a new flow which is called the dual Ricci flow.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symplectic geometric flows\",\"authors\":\"Teng Fei, Duong H. Phong\",\"doi\":\"10.4310/pamq.2023.v19.n4.a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several geometric flows on symplectic manifolds are introduced which are potentially of interest in symplectic geometry and topology. They are motivated by the Type IIA flow and T‑duality between flows in symplectic geometry and flows in complex geometry. Examples include the Hitchin gradient flow on symplectic manifolds, and a new flow which is called the dual Ricci flow.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/pamq.2023.v19.n4.a6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2023.v19.n4.a6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Several geometric flows on symplectic manifolds are introduced which are potentially of interest in symplectic geometry and topology. They are motivated by the Type IIA flow and T‑duality between flows in symplectic geometry and flows in complex geometry. Examples include the Hitchin gradient flow on symplectic manifolds, and a new flow which is called the dual Ricci flow.