Steklov特征函数的下界

IF 0.5 4区 数学 Q3 MATHEMATICS
Jeffrey Galkowski, John A. Toth
{"title":"Steklov特征函数的下界","authors":"Jeffrey Galkowski, John A. Toth","doi":"10.4310/pamq.2023.v19.n4.a7","DOIUrl":null,"url":null,"abstract":"Let $(\\Omega,g)$ be a compact, real analytic Riemannian manifold with real analytic boundary $\\partial \\Omega = M$. We give $L^2$-lower bounds for Steklov eigenfunctions and their restrictions to interior hypersurfaces $H \\subset \\Omega^\\circ$ in a geometrically defined neighborhood of $M$. Our results are optimal in the entire geometric neighborhood and complement the results on eigenfunction upper bounds in $\\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=3897008}{[\\textrm{GT19}]}$","PeriodicalId":54526,"journal":{"name":"Pure and Applied Mathematics Quarterly","volume":"195 2","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Lower bounds for Steklov eigenfunctions\",\"authors\":\"Jeffrey Galkowski, John A. Toth\",\"doi\":\"10.4310/pamq.2023.v19.n4.a7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $(\\\\Omega,g)$ be a compact, real analytic Riemannian manifold with real analytic boundary $\\\\partial \\\\Omega = M$. We give $L^2$-lower bounds for Steklov eigenfunctions and their restrictions to interior hypersurfaces $H \\\\subset \\\\Omega^\\\\circ$ in a geometrically defined neighborhood of $M$. Our results are optimal in the entire geometric neighborhood and complement the results on eigenfunction upper bounds in $\\\\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=3897008}{[\\\\textrm{GT19}]}$\",\"PeriodicalId\":54526,\"journal\":{\"name\":\"Pure and Applied Mathematics Quarterly\",\"volume\":\"195 2\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pure and Applied Mathematics Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/pamq.2023.v19.n4.a7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Mathematics Quarterly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2023.v19.n4.a7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 28

摘要

设$(\Omega,g)$是一个紧实解析黎曼流形,具有实解析边界$\partial \Omega = M$。我们给出了在几何定义的$M$邻域内Steklov特征函数的$L^2$ -下界及其对内部超曲面$H \subset \Omega^\circ$的限制。我们的结果在整个几何邻域内是最优的,并且补充了特征函数上界的结果 $\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=3897008}{[\textrm{GT19}]}$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lower bounds for Steklov eigenfunctions
Let $(\Omega,g)$ be a compact, real analytic Riemannian manifold with real analytic boundary $\partial \Omega = M$. We give $L^2$-lower bounds for Steklov eigenfunctions and their restrictions to interior hypersurfaces $H \subset \Omega^\circ$ in a geometrically defined neighborhood of $M$. Our results are optimal in the entire geometric neighborhood and complement the results on eigenfunction upper bounds in $\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=3897008}{[\textrm{GT19}]}$
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
30
审稿时长
>12 weeks
期刊介绍: Publishes high-quality, original papers on all fields of mathematics. To facilitate fruitful interchanges between mathematicians from different regions and specialties, and to effectively disseminate new breakthroughs in mathematics, the journal welcomes well-written submissions from all significant areas of mathematics. The editors are committed to promoting the highest quality of mathematical scholarship.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信