{"title":"量子书写局域化","authors":"Eduardo González, Chris T. Woodward","doi":"10.4310/pamq.2023.v19.n4.a9","DOIUrl":null,"url":null,"abstract":"We prove a quantum version of the localization formula of Witten $\\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=1185834}{[31]}$, see also $[\\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=1792291}{28}$, $\\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=1722000}{22}$, $\\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=2198772}{35}$], that relates invariants of a GIT quotient with the equivariant invariants of the action.","PeriodicalId":54526,"journal":{"name":"Pure and Applied Mathematics Quarterly","volume":"196 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Witten localization\",\"authors\":\"Eduardo González, Chris T. Woodward\",\"doi\":\"10.4310/pamq.2023.v19.n4.a9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a quantum version of the localization formula of Witten $\\\\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=1185834}{[31]}$, see also $[\\\\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=1792291}{28}$, $\\\\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=1722000}{22}$, $\\\\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=2198772}{35}$], that relates invariants of a GIT quotient with the equivariant invariants of the action.\",\"PeriodicalId\":54526,\"journal\":{\"name\":\"Pure and Applied Mathematics Quarterly\",\"volume\":\"196 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pure and Applied Mathematics Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/pamq.2023.v19.n4.a9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Mathematics Quarterly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2023.v19.n4.a9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
We prove a quantum version of the localization formula of Witten $\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=1185834}{[31]}$, see also $[\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=1792291}{28}$, $\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=1722000}{22}$, $\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=2198772}{35}$], that relates invariants of a GIT quotient with the equivariant invariants of the action.
期刊介绍:
Publishes high-quality, original papers on all fields of mathematics. To facilitate fruitful interchanges between mathematicians from different regions and specialties, and to effectively disseminate new breakthroughs in mathematics, the journal welcomes well-written submissions from all significant areas of mathematics. The editors are committed to promoting the highest quality of mathematical scholarship.