对称顶的稳定性和分岔

Pub Date : 2023-11-20 DOI:10.4310/pamq.2023.v19.n4.a12
Eugene Lerman
{"title":"对称顶的稳定性和分岔","authors":"Eugene Lerman","doi":"10.4310/pamq.2023.v19.n4.a12","DOIUrl":null,"url":null,"abstract":"We study the stability and bifurcation of relative equilibria of a particle on the Lie group $SO(3)$ whose motion is governed by an $SO(3) \\times SO(2)$ invariant metric and an $SO(2) \\times SO(2)$ invariant potential. Our method is to reduce the number of degrees of freedom at <i>singular</i> values of the $SO(2) \\times SO(2)$ momentum map and study the stability of the equilibria of the reduced systems as a function of spin. The result is an elementary analysis of the fast/slow transition in the Lagrange and Kirchhoff tops. More generally, since an $SO(2) \\times SO(2)$ invariant potential on $SO(3)$ can be thought of as $\\mathbb{Z}_2$ invariant function on a circle, we analyze the stability and bifurcation of relative equilibria of the system in terms of the second and fourth derivative of the function.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability and bifurcations of symmetric tops\",\"authors\":\"Eugene Lerman\",\"doi\":\"10.4310/pamq.2023.v19.n4.a12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the stability and bifurcation of relative equilibria of a particle on the Lie group $SO(3)$ whose motion is governed by an $SO(3) \\\\times SO(2)$ invariant metric and an $SO(2) \\\\times SO(2)$ invariant potential. Our method is to reduce the number of degrees of freedom at <i>singular</i> values of the $SO(2) \\\\times SO(2)$ momentum map and study the stability of the equilibria of the reduced systems as a function of spin. The result is an elementary analysis of the fast/slow transition in the Lagrange and Kirchhoff tops. More generally, since an $SO(2) \\\\times SO(2)$ invariant potential on $SO(3)$ can be thought of as $\\\\mathbb{Z}_2$ invariant function on a circle, we analyze the stability and bifurcation of relative equilibria of the system in terms of the second and fourth derivative of the function.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/pamq.2023.v19.n4.a12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2023.v19.n4.a12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了李群上粒子的相对平衡态的稳定性和分岔性,该群的运动由一个SO(3) \乘以SO(2)$不变度量和一个SO(2)$不变势控制。我们的方法是减少$SO(2) \乘以SO(2)$动量映射的奇异值处的自由度数,并研究减少后系统平衡的稳定性作为自旋的函数。结果是拉格朗日和基尔霍夫顶部的快/慢跃迁的初步分析。更一般地说,由于$SO(2) \乘以$SO(2) $在$SO(3)$上的不变势可以被认为是$\mathbb{Z}_2$在圆上的不变函数,我们用函数的二阶导数和四阶导数来分析系统的相对平衡的稳定性和分岔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Stability and bifurcations of symmetric tops
We study the stability and bifurcation of relative equilibria of a particle on the Lie group $SO(3)$ whose motion is governed by an $SO(3) \times SO(2)$ invariant metric and an $SO(2) \times SO(2)$ invariant potential. Our method is to reduce the number of degrees of freedom at singular values of the $SO(2) \times SO(2)$ momentum map and study the stability of the equilibria of the reduced systems as a function of spin. The result is an elementary analysis of the fast/slow transition in the Lagrange and Kirchhoff tops. More generally, since an $SO(2) \times SO(2)$ invariant potential on $SO(3)$ can be thought of as $\mathbb{Z}_2$ invariant function on a circle, we analyze the stability and bifurcation of relative equilibria of the system in terms of the second and fourth derivative of the function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信