b -辛环流形的Bohr-Sommerfeld量化

IF 0.5 4区 数学 Q3 MATHEMATICS
Pau Mir, Eva Miranda, Jonathan Weitsman
{"title":"b -辛环流形的Bohr-Sommerfeld量化","authors":"Pau Mir, Eva Miranda, Jonathan Weitsman","doi":"10.4310/pamq.2023.v19.n4.a15","DOIUrl":null,"url":null,"abstract":"We introduce a Bohr–Sommerfeld quantization for bsymplectic toric manifolds and show that it coincides with the formal geometric quantization of $\\href{ https://mathscinet.ams.org/mathscinet/relay-station?mr=3804693}{[\\textrm{GMW18b}]}$. In particular, we prove that its dimension is given by a signed count of the integral points in the moment polytope of the torus action on the manifold.","PeriodicalId":54526,"journal":{"name":"Pure and Applied Mathematics Quarterly","volume":"197 3","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bohr–Sommerfeld quantization of $b$-symplectic toric manifolds\",\"authors\":\"Pau Mir, Eva Miranda, Jonathan Weitsman\",\"doi\":\"10.4310/pamq.2023.v19.n4.a15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a Bohr–Sommerfeld quantization for bsymplectic toric manifolds and show that it coincides with the formal geometric quantization of $\\\\href{ https://mathscinet.ams.org/mathscinet/relay-station?mr=3804693}{[\\\\textrm{GMW18b}]}$. In particular, we prove that its dimension is given by a signed count of the integral points in the moment polytope of the torus action on the manifold.\",\"PeriodicalId\":54526,\"journal\":{\"name\":\"Pure and Applied Mathematics Quarterly\",\"volume\":\"197 3\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pure and Applied Mathematics Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/pamq.2023.v19.n4.a15\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Mathematics Quarterly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2023.v19.n4.a15","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们引入了双辛环流形的bor - sommerfeld量子化,并证明了它与$\href{ https://mathscinet.ams.org/mathscinet/relay-station?mr=3804693}{[\textrm{GMW18b}]}$的形式几何量子化相吻合。特别地,我们证明了它的维数是由环面作用于流形的矩多面体上的积分点的带符号计数给出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bohr–Sommerfeld quantization of $b$-symplectic toric manifolds
We introduce a Bohr–Sommerfeld quantization for bsymplectic toric manifolds and show that it coincides with the formal geometric quantization of $\href{ https://mathscinet.ams.org/mathscinet/relay-station?mr=3804693}{[\textrm{GMW18b}]}$. In particular, we prove that its dimension is given by a signed count of the integral points in the moment polytope of the torus action on the manifold.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
30
审稿时长
>12 weeks
期刊介绍: Publishes high-quality, original papers on all fields of mathematics. To facilitate fruitful interchanges between mathematicians from different regions and specialties, and to effectively disseminate new breakthroughs in mathematics, the journal welcomes well-written submissions from all significant areas of mathematics. The editors are committed to promoting the highest quality of mathematical scholarship.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信