可测函数的向量格的表征

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Simone Cerreia-Vioglio, Paolo Leonetti, Fabio Maccheroni
{"title":"可测函数的向量格的表征","authors":"Simone Cerreia-Vioglio, Paolo Leonetti, Fabio Maccheroni","doi":"10.1007/s00032-022-00351-4","DOIUrl":null,"url":null,"abstract":"<p>Given a probability measure space <span>\\((X,\\Sigma ,\\mu )\\)</span>, it is well known that the Riesz space <span>\\(L^0(\\mu )\\)</span> of equivalence classes of measurable functions <span>\\(f: X \\rightarrow \\mathbf {R}\\)</span> is universally complete and the constant function <span>\\(\\varvec{1}\\)</span> is a weak order unit. Moreover, the linear functional <span>\\(L^\\infty (\\mu )\\rightarrow \\mathbf {R}\\)</span> defined by <span>\\(f \\mapsto \\int f\\,\\mathrm {d}\\mu \\)</span> is strictly positive and order continuous. Here we show, in particular, that the converse holds true, i.e., any universally complete Riesz space <i>E</i> with a weak order unit <span>\\(e&gt;0\\)</span> which admits a strictly positive order continuous linear functional on the principal ideal generated by <i>e</i> is lattice isomorphic onto <span>\\(L^0(\\mu )\\)</span>, for some probability measure space <span>\\((X,\\Sigma ,\\mu )\\)</span>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Characterization of the Vector Lattice of Measurable Functions\",\"authors\":\"Simone Cerreia-Vioglio, Paolo Leonetti, Fabio Maccheroni\",\"doi\":\"10.1007/s00032-022-00351-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a probability measure space <span>\\\\((X,\\\\Sigma ,\\\\mu )\\\\)</span>, it is well known that the Riesz space <span>\\\\(L^0(\\\\mu )\\\\)</span> of equivalence classes of measurable functions <span>\\\\(f: X \\\\rightarrow \\\\mathbf {R}\\\\)</span> is universally complete and the constant function <span>\\\\(\\\\varvec{1}\\\\)</span> is a weak order unit. Moreover, the linear functional <span>\\\\(L^\\\\infty (\\\\mu )\\\\rightarrow \\\\mathbf {R}\\\\)</span> defined by <span>\\\\(f \\\\mapsto \\\\int f\\\\,\\\\mathrm {d}\\\\mu \\\\)</span> is strictly positive and order continuous. Here we show, in particular, that the converse holds true, i.e., any universally complete Riesz space <i>E</i> with a weak order unit <span>\\\\(e&gt;0\\\\)</span> which admits a strictly positive order continuous linear functional on the principal ideal generated by <i>e</i> is lattice isomorphic onto <span>\\\\(L^0(\\\\mu )\\\\)</span>, for some probability measure space <span>\\\\((X,\\\\Sigma ,\\\\mu )\\\\)</span>.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00032-022-00351-4\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00032-022-00351-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

给定一个概率测度空间\((X,\Sigma ,\mu )\),已知可测函数的等价类\(f: X \rightarrow \mathbf {R}\)的Riesz空间\(L^0(\mu )\)是普遍完备的,常数函数\(\varvec{1}\)是一个弱序单元。并且,由\(f \mapsto \int f\,\mathrm {d}\mu \)定义的线性泛函\(L^\infty (\mu )\rightarrow \mathbf {R}\)是严格正的、序连续的。这里我们特别证明了相反的命题成立,即对于某些概率测度空间\((X,\Sigma ,\mu )\),任何具有弱阶单位\(e>0\)的普遍完备Riesz空间E在主理想上允许一个严格正阶连续线性泛函在\(L^0(\mu )\)上是格同构的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Characterization of the Vector Lattice of Measurable Functions

Given a probability measure space \((X,\Sigma ,\mu )\), it is well known that the Riesz space \(L^0(\mu )\) of equivalence classes of measurable functions \(f: X \rightarrow \mathbf {R}\) is universally complete and the constant function \(\varvec{1}\) is a weak order unit. Moreover, the linear functional \(L^\infty (\mu )\rightarrow \mathbf {R}\) defined by \(f \mapsto \int f\,\mathrm {d}\mu \) is strictly positive and order continuous. Here we show, in particular, that the converse holds true, i.e., any universally complete Riesz space E with a weak order unit \(e>0\) which admits a strictly positive order continuous linear functional on the principal ideal generated by e is lattice isomorphic onto \(L^0(\mu )\), for some probability measure space \((X,\Sigma ,\mu )\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信