Manuel Fritz, Osama Muazzen, Michael Behringer, Holger Schwarz
{"title":"asp - dm:用于自动选择数据挖掘分析平台的框架","authors":"Manuel Fritz, Osama Muazzen, Michael Behringer, Holger Schwarz","doi":"10.1007/s00450-019-00408-7","DOIUrl":null,"url":null,"abstract":"The plethora of analytic platforms escalates the difficulty of selecting the most appropriate analytic platform that fits the needed data mining task, the dataset as well as additional user-defined criteria. Especially analysts, who are rather focused on the analytics domain, experience difficulties to keep up with the latest developments. In this work, we introduce the ASAP-DM framework, which enables analysts to seamlessly use several platforms, whereas programmers can easily add several platforms to the framework. Furthermore, we investigate how to predict a platform based on specific criteria, such as lowest runtime or resource consumption during the execution of a data mining task. We formulate this task as an optimization problem, which can be solved by today’s classification algorithms. We evaluate the proposed framework on several analytic platforms such as Spark, Mahout, and WEKA along with several data mining algorithms for classification, clustering, and association rule discovery. Our experiments unveil that the automatic selection process can save up to 99.71% of the execution time due to automatically choosing a faster platform.","PeriodicalId":41265,"journal":{"name":"SICS Software-Intensive Cyber-Physical Systems","volume":"310 10","pages":"1 - 13"},"PeriodicalIF":2.4000,"publicationDate":"2019-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ASAP-DM: a framework for automatic selection of analytic platforms for data mining\",\"authors\":\"Manuel Fritz, Osama Muazzen, Michael Behringer, Holger Schwarz\",\"doi\":\"10.1007/s00450-019-00408-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The plethora of analytic platforms escalates the difficulty of selecting the most appropriate analytic platform that fits the needed data mining task, the dataset as well as additional user-defined criteria. Especially analysts, who are rather focused on the analytics domain, experience difficulties to keep up with the latest developments. In this work, we introduce the ASAP-DM framework, which enables analysts to seamlessly use several platforms, whereas programmers can easily add several platforms to the framework. Furthermore, we investigate how to predict a platform based on specific criteria, such as lowest runtime or resource consumption during the execution of a data mining task. We formulate this task as an optimization problem, which can be solved by today’s classification algorithms. We evaluate the proposed framework on several analytic platforms such as Spark, Mahout, and WEKA along with several data mining algorithms for classification, clustering, and association rule discovery. Our experiments unveil that the automatic selection process can save up to 99.71% of the execution time due to automatically choosing a faster platform.\",\"PeriodicalId\":41265,\"journal\":{\"name\":\"SICS Software-Intensive Cyber-Physical Systems\",\"volume\":\"310 10\",\"pages\":\"1 - 13\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2019-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SICS Software-Intensive Cyber-Physical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00450-019-00408-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SICS Software-Intensive Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00450-019-00408-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
ASAP-DM: a framework for automatic selection of analytic platforms for data mining
The plethora of analytic platforms escalates the difficulty of selecting the most appropriate analytic platform that fits the needed data mining task, the dataset as well as additional user-defined criteria. Especially analysts, who are rather focused on the analytics domain, experience difficulties to keep up with the latest developments. In this work, we introduce the ASAP-DM framework, which enables analysts to seamlessly use several platforms, whereas programmers can easily add several platforms to the framework. Furthermore, we investigate how to predict a platform based on specific criteria, such as lowest runtime or resource consumption during the execution of a data mining task. We formulate this task as an optimization problem, which can be solved by today’s classification algorithms. We evaluate the proposed framework on several analytic platforms such as Spark, Mahout, and WEKA along with several data mining algorithms for classification, clustering, and association rule discovery. Our experiments unveil that the automatic selection process can save up to 99.71% of the execution time due to automatically choosing a faster platform.