数刚性下相互作用粒子系统的遍历性

IF 1.5 1区 数学 Q2 STATISTICS & PROBABILITY
Kohei Suzuki
{"title":"数刚性下相互作用粒子系统的遍历性","authors":"Kohei Suzuki","doi":"10.1007/s00440-023-01243-3","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we provide relations among the following properties: </p><ol>\n<li>\n<span>(a)</span>\n<p>the tail triviality of a probability measure <span>\\(\\mu \\)</span> on the configuration space <span>\\({\\varvec{\\Upsilon }}\\)</span>;</p>\n</li>\n<li>\n<span>(b)</span>\n<p>the finiteness of a suitable <span>\\(L^2\\)</span>-transportation-type distance <span>\\(\\bar{\\textsf {d} }_{\\varvec{\\Upsilon }}\\)</span>;</p>\n</li>\n<li>\n<span>(c)</span>\n<p>the irreducibility of local <span>\\({\\mu }\\)</span>-symmetric Dirichlet forms on <span>\\({\\varvec{\\Upsilon }}\\)</span>.</p>\n</li>\n</ol><p> As an application, we obtain the ergodicity (i.e., the convergence to the equilibrium) of interacting infinite diffusions having logarithmic interaction and arising from determinantal/permanental point processes including <span>\\(\\text {sine}_{2}\\)</span>, <span>\\(\\text {Airy}_{2}\\)</span>, <span>\\(\\text {Bessel}_{\\alpha , 2}\\)</span> (<span>\\(\\alpha \\ge 1\\)</span>), and <span>\\(\\text {Ginibre}\\)</span> point processes. In particular, the case of the unlabelled Dyson Brownian motion is covered. For the proof, the number rigidity of point processes in the sense of Ghosh–Peres plays a key role.</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":"314 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the ergodicity of interacting particle systems under number rigidity\",\"authors\":\"Kohei Suzuki\",\"doi\":\"10.1007/s00440-023-01243-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we provide relations among the following properties: </p><ol>\\n<li>\\n<span>(a)</span>\\n<p>the tail triviality of a probability measure <span>\\\\(\\\\mu \\\\)</span> on the configuration space <span>\\\\({\\\\varvec{\\\\Upsilon }}\\\\)</span>;</p>\\n</li>\\n<li>\\n<span>(b)</span>\\n<p>the finiteness of a suitable <span>\\\\(L^2\\\\)</span>-transportation-type distance <span>\\\\(\\\\bar{\\\\textsf {d} }_{\\\\varvec{\\\\Upsilon }}\\\\)</span>;</p>\\n</li>\\n<li>\\n<span>(c)</span>\\n<p>the irreducibility of local <span>\\\\({\\\\mu }\\\\)</span>-symmetric Dirichlet forms on <span>\\\\({\\\\varvec{\\\\Upsilon }}\\\\)</span>.</p>\\n</li>\\n</ol><p> As an application, we obtain the ergodicity (i.e., the convergence to the equilibrium) of interacting infinite diffusions having logarithmic interaction and arising from determinantal/permanental point processes including <span>\\\\(\\\\text {sine}_{2}\\\\)</span>, <span>\\\\(\\\\text {Airy}_{2}\\\\)</span>, <span>\\\\(\\\\text {Bessel}_{\\\\alpha , 2}\\\\)</span> (<span>\\\\(\\\\alpha \\\\ge 1\\\\)</span>), and <span>\\\\(\\\\text {Ginibre}\\\\)</span> point processes. In particular, the case of the unlabelled Dyson Brownian motion is covered. For the proof, the number rigidity of point processes in the sense of Ghosh–Peres plays a key role.</p>\",\"PeriodicalId\":20527,\"journal\":{\"name\":\"Probability Theory and Related Fields\",\"volume\":\"314 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Theory and Related Fields\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00440-023-01243-3\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00440-023-01243-3","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

本文给出了以下性质之间的关系:(a)一个概率测度\(\mu \)在位形空间\({\varvec{\Upsilon }}\)上的尾平凡性;(b)一个合适的\(L^2\) -输运型距离\(\bar{\textsf {d} }_{\varvec{\Upsilon }}\)的有限性;(c) \({\varvec{\Upsilon }}\)上局部\({\mu }\) -对称Dirichlet形式的不可约性。作为一个应用,我们得到了具有对数相互作用的相互作用的无限扩散的遍历性(即收敛到平衡),这些扩散产生于确定/永久的点过程,包括\(\text {sine}_{2}\), \(\text {Airy}_{2}\), \(\text {Bessel}_{\alpha , 2}\) (\(\alpha \ge 1\))和\(\text {Ginibre}\)点过程。特别地,未标记的戴森-布朗运动的情况被涵盖。对于证明,Ghosh-Peres意义上的点过程的数刚性起着关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the ergodicity of interacting particle systems under number rigidity

On the ergodicity of interacting particle systems under number rigidity

In this paper, we provide relations among the following properties:

  1. (a)

    the tail triviality of a probability measure \(\mu \) on the configuration space \({\varvec{\Upsilon }}\);

  2. (b)

    the finiteness of a suitable \(L^2\)-transportation-type distance \(\bar{\textsf {d} }_{\varvec{\Upsilon }}\);

  3. (c)

    the irreducibility of local \({\mu }\)-symmetric Dirichlet forms on \({\varvec{\Upsilon }}\).

As an application, we obtain the ergodicity (i.e., the convergence to the equilibrium) of interacting infinite diffusions having logarithmic interaction and arising from determinantal/permanental point processes including \(\text {sine}_{2}\), \(\text {Airy}_{2}\), \(\text {Bessel}_{\alpha , 2}\) (\(\alpha \ge 1\)), and \(\text {Ginibre}\) point processes. In particular, the case of the unlabelled Dyson Brownian motion is covered. For the proof, the number rigidity of point processes in the sense of Ghosh–Peres plays a key role.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probability Theory and Related Fields
Probability Theory and Related Fields 数学-统计学与概率论
CiteScore
3.70
自引率
5.00%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信