对数凹概率测度的半空间深度

IF 1.5 1区 数学 Q2 STATISTICS & PROBABILITY
Silouanos Brazitikos, Apostolos Giannopoulos, Minas Pafis
{"title":"对数凹概率测度的半空间深度","authors":"Silouanos Brazitikos, Apostolos Giannopoulos, Minas Pafis","doi":"10.1007/s00440-023-01236-2","DOIUrl":null,"url":null,"abstract":"<p>Given a probability measure <span>\\(\\mu \\)</span> on <span>\\({{\\mathbb {R}}}^n\\)</span>, Tukey’s half-space depth is defined for any <span>\\(x\\in {{\\mathbb {R}}}^n\\)</span> by <span>\\(\\varphi _{\\mu }(x)=\\inf \\{\\mu (H):H\\in {{{\\mathcal {H}}}}(x)\\}\\)</span>, where <span>\\(\\mathcal{H}(x)\\)</span> is the set of all half-spaces <i>H</i> of <span>\\({{\\mathbb {R}}}^n\\)</span> containing <i>x</i>. We show that if <span>\\(\\mu \\)</span> is a non-degenerate log-concave probability measure on <span>\\({{\\mathbb {R}}}^n\\)</span> then </p><span>$$\\begin{aligned} e^{-c_1n}\\leqslant \\int _{{\\mathbb {R}}^n}\\varphi _{\\mu }(x)\\,d\\mu (x) \\leqslant e^{-c_2n/L_{\\mu }^2} \\end{aligned}$$</span><p>where <span>\\(L_{\\mu }\\)</span> is the isotropic constant of <span>\\(\\mu \\)</span> and <span>\\(c_1,c_2&gt;0\\)</span> are absolute constants. The proofs combine large deviations techniques with a number of facts from the theory of <span>\\(L_q\\)</span>-centroid bodies of log-concave probability measures. The same ideas lead to general estimates for the expected measure of random polytopes whose vertices have a log-concave distribution.\n</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Half-space depth of log-concave probability measures\",\"authors\":\"Silouanos Brazitikos, Apostolos Giannopoulos, Minas Pafis\",\"doi\":\"10.1007/s00440-023-01236-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a probability measure <span>\\\\(\\\\mu \\\\)</span> on <span>\\\\({{\\\\mathbb {R}}}^n\\\\)</span>, Tukey’s half-space depth is defined for any <span>\\\\(x\\\\in {{\\\\mathbb {R}}}^n\\\\)</span> by <span>\\\\(\\\\varphi _{\\\\mu }(x)=\\\\inf \\\\{\\\\mu (H):H\\\\in {{{\\\\mathcal {H}}}}(x)\\\\}\\\\)</span>, where <span>\\\\(\\\\mathcal{H}(x)\\\\)</span> is the set of all half-spaces <i>H</i> of <span>\\\\({{\\\\mathbb {R}}}^n\\\\)</span> containing <i>x</i>. We show that if <span>\\\\(\\\\mu \\\\)</span> is a non-degenerate log-concave probability measure on <span>\\\\({{\\\\mathbb {R}}}^n\\\\)</span> then </p><span>$$\\\\begin{aligned} e^{-c_1n}\\\\leqslant \\\\int _{{\\\\mathbb {R}}^n}\\\\varphi _{\\\\mu }(x)\\\\,d\\\\mu (x) \\\\leqslant e^{-c_2n/L_{\\\\mu }^2} \\\\end{aligned}$$</span><p>where <span>\\\\(L_{\\\\mu }\\\\)</span> is the isotropic constant of <span>\\\\(\\\\mu \\\\)</span> and <span>\\\\(c_1,c_2&gt;0\\\\)</span> are absolute constants. The proofs combine large deviations techniques with a number of facts from the theory of <span>\\\\(L_q\\\\)</span>-centroid bodies of log-concave probability measures. The same ideas lead to general estimates for the expected measure of random polytopes whose vertices have a log-concave distribution.\\n</p>\",\"PeriodicalId\":20527,\"journal\":{\"name\":\"Probability Theory and Related Fields\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Theory and Related Fields\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00440-023-01236-2\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00440-023-01236-2","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

摘要

给定一个概率测度 \(\mu \) on \({{\mathbb {R}}}^n\), Tukey的半空间深度定义为任何 \(x\in {{\mathbb {R}}}^n\) 通过 \(\varphi _{\mu }(x)=\inf \{\mu (H):H\in {{{\mathcal {H}}}}(x)\}\),其中 \(\mathcal{H}(x)\) 所有半空间的集合H是什么 \({{\mathbb {R}}}^n\) 包含x,我们证明了 \(\mu \) 一个非退化对数凹概率测度在 \({{\mathbb {R}}}^n\) 然后 $$\begin{aligned} e^{-c_1n}\leqslant \int _{{\mathbb {R}}^n}\varphi _{\mu }(x)\,d\mu (x) \leqslant e^{-c_2n/L_{\mu }^2} \end{aligned}$$在哪里 \(L_{\mu }\) 各向同性常数是 \(\mu \) 和 \(c_1,c_2>0\) 都是绝对常数。这些证明结合了大偏差技术和来自理论的大量事实 \(L_q\)-对数凹概率测度的质心体。同样的思想导致了对顶点为对数凹分布的随机多面体的期望测度的一般估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Half-space depth of log-concave probability measures

Given a probability measure \(\mu \) on \({{\mathbb {R}}}^n\), Tukey’s half-space depth is defined for any \(x\in {{\mathbb {R}}}^n\) by \(\varphi _{\mu }(x)=\inf \{\mu (H):H\in {{{\mathcal {H}}}}(x)\}\), where \(\mathcal{H}(x)\) is the set of all half-spaces H of \({{\mathbb {R}}}^n\) containing x. We show that if \(\mu \) is a non-degenerate log-concave probability measure on \({{\mathbb {R}}}^n\) then

$$\begin{aligned} e^{-c_1n}\leqslant \int _{{\mathbb {R}}^n}\varphi _{\mu }(x)\,d\mu (x) \leqslant e^{-c_2n/L_{\mu }^2} \end{aligned}$$

where \(L_{\mu }\) is the isotropic constant of \(\mu \) and \(c_1,c_2>0\) are absolute constants. The proofs combine large deviations techniques with a number of facts from the theory of \(L_q\)-centroid bodies of log-concave probability measures. The same ideas lead to general estimates for the expected measure of random polytopes whose vertices have a log-concave distribution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probability Theory and Related Fields
Probability Theory and Related Fields 数学-统计学与概率论
CiteScore
3.70
自引率
5.00%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信