{"title":"寄生互作对网络巢性的丰度效应强于食草互作","authors":"Bin Lan,Xiaoli Hu,Ying Wang,Shucun Sun","doi":"10.1093/jpe/rtac052","DOIUrl":null,"url":null,"abstract":"Abstract It has been suggested that the importance of network architecture to species diversity and stability should be based on preference networks (comprised of niche differentiations), rather than observational networks, because species abundance may significantly affect interaction frequencies. Considering that resource abundance is usually greater for herbivores than parasites, we hypothesized that the abundance effect is stronger for parasitic than herbivory interactions. To test this hypothesis, we collected 80 quantitative observational networks including 34 herbivorous and 46 parasitic networks from the published literature, and derived preference networks by removing the effects of species abundance. We then determined the network nestedness using both weighted NODF and spectral radius. We also determined species degree distribution, interaction evenness, weighted connectance and robustness for both observational and preference networks. The observational networks (including both herbivory and parasitic networks) were more nested judged by weighted NODF than spectral radius. Preference networks were less nested for parasitic than herbivory networks in terms of both weighted NODF and spectral radius, possibly because removing the abundance effect increased interaction evenness. These trends indicated that the abundance effect on network nestedness was stronger for parasitic than herbivory networks.Weighted connectance and robustness were greater in most preference networks than observational networks, indicating that preference networks may have higher network stability and community persistence compared to observational ones. The data indicate that future network analyses should not only address the structural difference between mutualistic and antagonistic interactions, but also between herbivory and parasitic interactions.","PeriodicalId":50085,"journal":{"name":"Journal of Plant Ecology","volume":"36 8","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The abundance effect on network nestedness is stronger for parasitic than herbivory interactions\",\"authors\":\"Bin Lan,Xiaoli Hu,Ying Wang,Shucun Sun\",\"doi\":\"10.1093/jpe/rtac052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract It has been suggested that the importance of network architecture to species diversity and stability should be based on preference networks (comprised of niche differentiations), rather than observational networks, because species abundance may significantly affect interaction frequencies. Considering that resource abundance is usually greater for herbivores than parasites, we hypothesized that the abundance effect is stronger for parasitic than herbivory interactions. To test this hypothesis, we collected 80 quantitative observational networks including 34 herbivorous and 46 parasitic networks from the published literature, and derived preference networks by removing the effects of species abundance. We then determined the network nestedness using both weighted NODF and spectral radius. We also determined species degree distribution, interaction evenness, weighted connectance and robustness for both observational and preference networks. The observational networks (including both herbivory and parasitic networks) were more nested judged by weighted NODF than spectral radius. Preference networks were less nested for parasitic than herbivory networks in terms of both weighted NODF and spectral radius, possibly because removing the abundance effect increased interaction evenness. These trends indicated that the abundance effect on network nestedness was stronger for parasitic than herbivory networks.Weighted connectance and robustness were greater in most preference networks than observational networks, indicating that preference networks may have higher network stability and community persistence compared to observational ones. The data indicate that future network analyses should not only address the structural difference between mutualistic and antagonistic interactions, but also between herbivory and parasitic interactions.\",\"PeriodicalId\":50085,\"journal\":{\"name\":\"Journal of Plant Ecology\",\"volume\":\"36 8\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jpe/rtac052\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jpe/rtac052","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
The abundance effect on network nestedness is stronger for parasitic than herbivory interactions
Abstract It has been suggested that the importance of network architecture to species diversity and stability should be based on preference networks (comprised of niche differentiations), rather than observational networks, because species abundance may significantly affect interaction frequencies. Considering that resource abundance is usually greater for herbivores than parasites, we hypothesized that the abundance effect is stronger for parasitic than herbivory interactions. To test this hypothesis, we collected 80 quantitative observational networks including 34 herbivorous and 46 parasitic networks from the published literature, and derived preference networks by removing the effects of species abundance. We then determined the network nestedness using both weighted NODF and spectral radius. We also determined species degree distribution, interaction evenness, weighted connectance and robustness for both observational and preference networks. The observational networks (including both herbivory and parasitic networks) were more nested judged by weighted NODF than spectral radius. Preference networks were less nested for parasitic than herbivory networks in terms of both weighted NODF and spectral radius, possibly because removing the abundance effect increased interaction evenness. These trends indicated that the abundance effect on network nestedness was stronger for parasitic than herbivory networks.Weighted connectance and robustness were greater in most preference networks than observational networks, indicating that preference networks may have higher network stability and community persistence compared to observational ones. The data indicate that future network analyses should not only address the structural difference between mutualistic and antagonistic interactions, but also between herbivory and parasitic interactions.
期刊介绍:
Journal of Plant Ecology (JPE) serves as an important medium for ecologists to present research findings and discuss challenging issues in the broad field of plants and their interactions with biotic and abiotic environment. The JPE will cover all aspects of plant ecology, including plant ecophysiology, population ecology, community ecology, ecosystem ecology and landscape ecology as well as conservation ecology, evolutionary ecology, and theoretical ecology.