{"title":"语音引导性分析与生成的计算认知模型","authors":"Peter M. C. Harrison,Marcus T. Pearce","doi":"10.1525/mp.2020.37.3.208","DOIUrl":null,"url":null,"abstract":"Voice leading is a common task in Western music composition whose conventions are consistent with fundamental principles of auditory perception. Here we introduce a computational cognitive model of voice leading, intended both for analyzing voice-leading practices within encoded musical corpora and for generating new voice leadings for unseen chord sequences. This model is feature-based, quantifying the desirability of a given voice leading on the basis of different features derived from Huron’s (2001) perceptual account of voice leading. We use the model to analyze a corpus of 370 chorale harmonizations by J. S. Bach, and demonstrate the model’s application to the voicing of harmonic progressions in different musical genres. The model is implemented in a new R package, “voicer,” which we release alongside this paper.","PeriodicalId":47786,"journal":{"name":"Music Perception","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Computational Cognitive Model for the Analysis and Generation of Voice Leadings\",\"authors\":\"Peter M. C. Harrison,Marcus T. Pearce\",\"doi\":\"10.1525/mp.2020.37.3.208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Voice leading is a common task in Western music composition whose conventions are consistent with fundamental principles of auditory perception. Here we introduce a computational cognitive model of voice leading, intended both for analyzing voice-leading practices within encoded musical corpora and for generating new voice leadings for unseen chord sequences. This model is feature-based, quantifying the desirability of a given voice leading on the basis of different features derived from Huron’s (2001) perceptual account of voice leading. We use the model to analyze a corpus of 370 chorale harmonizations by J. S. Bach, and demonstrate the model’s application to the voicing of harmonic progressions in different musical genres. The model is implemented in a new R package, “voicer,” which we release alongside this paper.\",\"PeriodicalId\":47786,\"journal\":{\"name\":\"Music Perception\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Music Perception\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1525/mp.2020.37.3.208\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"MUSIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Music Perception","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1525/mp.2020.37.3.208","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MUSIC","Score":null,"Total":0}
A Computational Cognitive Model for the Analysis and Generation of Voice Leadings
Voice leading is a common task in Western music composition whose conventions are consistent with fundamental principles of auditory perception. Here we introduce a computational cognitive model of voice leading, intended both for analyzing voice-leading practices within encoded musical corpora and for generating new voice leadings for unseen chord sequences. This model is feature-based, quantifying the desirability of a given voice leading on the basis of different features derived from Huron’s (2001) perceptual account of voice leading. We use the model to analyze a corpus of 370 chorale harmonizations by J. S. Bach, and demonstrate the model’s application to the voicing of harmonic progressions in different musical genres. The model is implemented in a new R package, “voicer,” which we release alongside this paper.
期刊介绍:
Music Perception charts the ongoing scholarly discussion and study of musical phenomena. Publishing original empirical and theoretical papers, methodological articles and critical reviews from renowned scientists and musicians, Music Perception is a repository of insightful research. The broad range of disciplines covered in the journal includes: •Psychology •Psychophysics •Linguistics •Neurology •Neurophysiology •Artificial intelligence •Computer technology •Physical and architectural acoustics •Music theory