集体选择议价模型的纯策略纳什均衡

IF 0.6 4区 经济学 Q4 ECONOMICS
Malte Braack, Christian Henning, Johannes Ziesmer
{"title":"集体选择议价模型的纯策略纳什均衡","authors":"Malte Braack, Christian Henning, Johannes Ziesmer","doi":"10.1007/s00182-023-00882-z","DOIUrl":null,"url":null,"abstract":"<p>This paper considers pure strategy Nash equilibria of non-cooperative legislative bargaining models. In contrast to existing legislative bargaining models, we derive legislators behavior from stochastic utility maximization. This approach allows us to prove the existence of a stationary Pure Local and Global Nash Equilibrium under rather general settings. The mathematical proof is based on a fixed point argument, which can also be used as a numerical method to determine an equilibrium. We characterize the equilibrium outcome as a lottery of legislators’ proposals and prove a <i>Mean Voter Theorem</i>, i.e., proposals result dimension-by-dimension as a weighted mean of legislators’ ideal points and are Pareto-optimal. Based on a simple example, we illustrate different logic of our model compared to mixed strategy equilibrium of the legislative bargaining model suggested by Banks and Duggan (Am Polit Sci Rev 94(1):73–88. https://doi.org/10.2307/2586381, 2000).</p>","PeriodicalId":14155,"journal":{"name":"International Journal of Game Theory","volume":"7 2","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pure strategy Nash equilibria for bargaining models of collective choice\",\"authors\":\"Malte Braack, Christian Henning, Johannes Ziesmer\",\"doi\":\"10.1007/s00182-023-00882-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper considers pure strategy Nash equilibria of non-cooperative legislative bargaining models. In contrast to existing legislative bargaining models, we derive legislators behavior from stochastic utility maximization. This approach allows us to prove the existence of a stationary Pure Local and Global Nash Equilibrium under rather general settings. The mathematical proof is based on a fixed point argument, which can also be used as a numerical method to determine an equilibrium. We characterize the equilibrium outcome as a lottery of legislators’ proposals and prove a <i>Mean Voter Theorem</i>, i.e., proposals result dimension-by-dimension as a weighted mean of legislators’ ideal points and are Pareto-optimal. Based on a simple example, we illustrate different logic of our model compared to mixed strategy equilibrium of the legislative bargaining model suggested by Banks and Duggan (Am Polit Sci Rev 94(1):73–88. https://doi.org/10.2307/2586381, 2000).</p>\",\"PeriodicalId\":14155,\"journal\":{\"name\":\"International Journal of Game Theory\",\"volume\":\"7 2\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Game Theory\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1007/s00182-023-00882-z\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Game Theory","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s00182-023-00882-z","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

研究非合作立法议价模型的纯策略纳什均衡。与现有的立法议价模型相比,我们从随机效用最大化出发推导了立法者的行为。这种方法使我们能够证明在相当一般的情况下存在一个平稳的纯局部和全局纳什均衡。数学证明是基于不动点论证的,它也可以作为确定平衡的数值方法。我们将均衡结果描述为立法者提案的抽奖,并证明了平均选民定理,即提案结果逐维是立法者理想点的加权平均值,并且是帕累托最优的。通过一个简单的例子,我们将我们的模型与Banks和Duggan提出的立法议价模型的混合策略均衡(政治科学学报,94(1):73-88)进行了对比。https://doi.org/10.2307/2586381, 2000)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pure strategy Nash equilibria for bargaining models of collective choice

Pure strategy Nash equilibria for bargaining models of collective choice

This paper considers pure strategy Nash equilibria of non-cooperative legislative bargaining models. In contrast to existing legislative bargaining models, we derive legislators behavior from stochastic utility maximization. This approach allows us to prove the existence of a stationary Pure Local and Global Nash Equilibrium under rather general settings. The mathematical proof is based on a fixed point argument, which can also be used as a numerical method to determine an equilibrium. We characterize the equilibrium outcome as a lottery of legislators’ proposals and prove a Mean Voter Theorem, i.e., proposals result dimension-by-dimension as a weighted mean of legislators’ ideal points and are Pareto-optimal. Based on a simple example, we illustrate different logic of our model compared to mixed strategy equilibrium of the legislative bargaining model suggested by Banks and Duggan (Am Polit Sci Rev 94(1):73–88. https://doi.org/10.2307/2586381, 2000).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Game Theory
International Journal of Game Theory 数学-数学跨学科应用
CiteScore
1.30
自引率
0.00%
发文量
9
审稿时长
1 months
期刊介绍: International Journal of Game Theory is devoted to game theory and its applications. It publishes original research making significant contributions from a methodological, conceptual or mathematical point of view. Survey articles may also be considered if especially useful for the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信