在线匹配不允许\(o(\sqrt {\log n})\) -竞争算法

IF 0.9 3区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Enoch Peserico, Michele Scquizzato
{"title":"在线匹配不允许\\(o(\\sqrt {\\log n})\\) -竞争算法","authors":"Enoch Peserico, Michele Scquizzato","doi":"https://dl.acm.org/doi/10.1145/3594873","DOIUrl":null,"url":null,"abstract":"<p>We present a simple proof that no randomized online matching algorithm for the line can be \\((\\sqrt {\\log _2(n+1)}/15)\\)-competitive against an oblivious adversary for any <i>n</i> = 2<sup><i></i>i</sup> - 1 : <i>i</i> ∈ ℕ. This is the first super-constant lower bound for the problem, and disproves as a corollary a recent conjecture on the topology-parametrized competitiveness achievable on generic spaces.</p>","PeriodicalId":50922,"journal":{"name":"ACM Transactions on Algorithms","volume":"7 15","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matching on the Line Admits no \\\\(o(\\\\sqrt {\\\\log n})\\\\) -Competitive Algorithm\",\"authors\":\"Enoch Peserico, Michele Scquizzato\",\"doi\":\"https://dl.acm.org/doi/10.1145/3594873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a simple proof that no randomized online matching algorithm for the line can be \\\\((\\\\sqrt {\\\\log _2(n+1)}/15)\\\\)-competitive against an oblivious adversary for any <i>n</i> = 2<sup><i></i>i</sup> - 1 : <i>i</i> ∈ ℕ. This is the first super-constant lower bound for the problem, and disproves as a corollary a recent conjecture on the topology-parametrized competitiveness achievable on generic spaces.</p>\",\"PeriodicalId\":50922,\"journal\":{\"name\":\"ACM Transactions on Algorithms\",\"volume\":\"7 15\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Algorithms\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3594873\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3594873","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了一个简单的证明,对于任意n = 2i - 1: i∈n,没有任何随机在线匹配算法可以与遗忘对手\((\sqrt {\log _2(n+1)}/15)\)竞争。这是该问题的第一个超常数下界,并作为一个推论否定了最近关于在一般空间上可实现的拓扑参数化竞争的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matching on the Line Admits no \(o(\sqrt {\log n})\) -Competitive Algorithm

We present a simple proof that no randomized online matching algorithm for the line can be \((\sqrt {\log _2(n+1)}/15)\)-competitive against an oblivious adversary for any n = 2i - 1 : i ∈ ℕ. This is the first super-constant lower bound for the problem, and disproves as a corollary a recent conjecture on the topology-parametrized competitiveness achievable on generic spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Algorithms
ACM Transactions on Algorithms COMPUTER SCIENCE, THEORY & METHODS-MATHEMATICS, APPLIED
CiteScore
3.30
自引率
0.00%
发文量
50
审稿时长
6-12 weeks
期刊介绍: ACM Transactions on Algorithms welcomes submissions of original research of the highest quality dealing with algorithms that are inherently discrete and finite, and having mathematical content in a natural way, either in the objective or in the analysis. Most welcome are new algorithms and data structures, new and improved analyses, and complexity results. Specific areas of computation covered by the journal include combinatorial searches and objects; counting; discrete optimization and approximation; randomization and quantum computation; parallel and distributed computation; algorithms for graphs, geometry, arithmetic, number theory, strings; on-line analysis; cryptography; coding; data compression; learning algorithms; methods of algorithmic analysis; discrete algorithms for application areas such as biology, economics, game theory, communication, computer systems and architecture, hardware design, scientific computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信