{"title":"双矩阵对策中1/3-近似纳什均衡的多项式时间算法","authors":"Argyrios Deligkas, Michail Fasoulakis, Evangelos Markakis","doi":"https://dl.acm.org/doi/10.1145/3606697","DOIUrl":null,"url":null,"abstract":"<p>Since the celebrated PPAD-completeness result for Nash equilibria in bimatrix games, a long line of research has focused on polynomial-time algorithms that compute ε-approximate Nash equilibria. Finding the best possible approximation guarantee that we can have in polynomial time has been a fundamental and non-trivial pursuit on settling the complexity of approximate equilibria. Despite a significant amount of effort, the algorithm of Tsaknakis and Spirakis [38], with an approximation guarantee of (0.3393 + <i>δ</i>), remains the state of the art over the last 15 years. In this paper, we propose a new refinement of the Tsaknakis-Spirakis algorithm, resulting in a polynomial-time algorithm that computes a \\((\\frac{1}{3}+\\delta) \\)-Nash equilibrium, for any constant <i>δ</i> > 0. The main idea of our approach is to go beyond the use of convex combinations of primal and dual strategies, as defined in the optimization framework of [38], and enrich the pool of strategies from which we build the strategy profiles that we output in certain bottleneck cases of the algorithm.</p>","PeriodicalId":50922,"journal":{"name":"ACM Transactions on Algorithms","volume":"7 18","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Polynomial-Time Algorithm for 1/3-Approximate Nash Equilibria in Bimatrix Games\",\"authors\":\"Argyrios Deligkas, Michail Fasoulakis, Evangelos Markakis\",\"doi\":\"https://dl.acm.org/doi/10.1145/3606697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Since the celebrated PPAD-completeness result for Nash equilibria in bimatrix games, a long line of research has focused on polynomial-time algorithms that compute ε-approximate Nash equilibria. Finding the best possible approximation guarantee that we can have in polynomial time has been a fundamental and non-trivial pursuit on settling the complexity of approximate equilibria. Despite a significant amount of effort, the algorithm of Tsaknakis and Spirakis [38], with an approximation guarantee of (0.3393 + <i>δ</i>), remains the state of the art over the last 15 years. In this paper, we propose a new refinement of the Tsaknakis-Spirakis algorithm, resulting in a polynomial-time algorithm that computes a \\\\((\\\\frac{1}{3}+\\\\delta) \\\\)-Nash equilibrium, for any constant <i>δ</i> > 0. The main idea of our approach is to go beyond the use of convex combinations of primal and dual strategies, as defined in the optimization framework of [38], and enrich the pool of strategies from which we build the strategy profiles that we output in certain bottleneck cases of the algorithm.</p>\",\"PeriodicalId\":50922,\"journal\":{\"name\":\"ACM Transactions on Algorithms\",\"volume\":\"7 18\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Algorithms\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3606697\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3606697","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
A Polynomial-Time Algorithm for 1/3-Approximate Nash Equilibria in Bimatrix Games
Since the celebrated PPAD-completeness result for Nash equilibria in bimatrix games, a long line of research has focused on polynomial-time algorithms that compute ε-approximate Nash equilibria. Finding the best possible approximation guarantee that we can have in polynomial time has been a fundamental and non-trivial pursuit on settling the complexity of approximate equilibria. Despite a significant amount of effort, the algorithm of Tsaknakis and Spirakis [38], with an approximation guarantee of (0.3393 + δ), remains the state of the art over the last 15 years. In this paper, we propose a new refinement of the Tsaknakis-Spirakis algorithm, resulting in a polynomial-time algorithm that computes a \((\frac{1}{3}+\delta) \)-Nash equilibrium, for any constant δ > 0. The main idea of our approach is to go beyond the use of convex combinations of primal and dual strategies, as defined in the optimization framework of [38], and enrich the pool of strategies from which we build the strategy profiles that we output in certain bottleneck cases of the algorithm.
期刊介绍:
ACM Transactions on Algorithms welcomes submissions of original research of the highest quality dealing with algorithms that are inherently discrete and finite, and having mathematical content in a natural way, either in the objective or in the analysis. Most welcome are new algorithms and data structures, new and improved analyses, and complexity results. Specific areas of computation covered by the journal include
combinatorial searches and objects;
counting;
discrete optimization and approximation;
randomization and quantum computation;
parallel and distributed computation;
algorithms for
graphs,
geometry,
arithmetic,
number theory,
strings;
on-line analysis;
cryptography;
coding;
data compression;
learning algorithms;
methods of algorithmic analysis;
discrete algorithms for application areas such as
biology,
economics,
game theory,
communication,
computer systems and architecture,
hardware design,
scientific computing