{"title":"小连通子图采样的高效和近最优算法","authors":"Marco Bressan","doi":"https://dl.acm.org/doi/10.1145/3596495","DOIUrl":null,"url":null,"abstract":"<p>We study the following problem: Given an integer <i>k</i> ≥ 3 and a simple graph <i>G</i>, sample a connected induced <i>k</i>-vertex subgraph of <i>G</i> uniformly at random. This is a fundamental graph mining primitive with applications in social network analysis, bioinformatics, and more. Surprisingly, no efficient algorithm is known for uniform sampling; the only somewhat efficient algorithms available yield samples that are only approximately uniform, with running times that are unclear or suboptimal. In this work, we provide: (i) a near-optimal mixing time bound for a well-known random walk technique, (ii) the first efficient algorithm for truly uniform graphlet sampling, and (iii) the first sublinear-time algorithm for ε-uniform graphlet sampling.</p>","PeriodicalId":50922,"journal":{"name":"ACM Transactions on Algorithms","volume":"7 20","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient and Near-optimal Algorithms for Sampling Small Connected Subgraphs\",\"authors\":\"Marco Bressan\",\"doi\":\"https://dl.acm.org/doi/10.1145/3596495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the following problem: Given an integer <i>k</i> ≥ 3 and a simple graph <i>G</i>, sample a connected induced <i>k</i>-vertex subgraph of <i>G</i> uniformly at random. This is a fundamental graph mining primitive with applications in social network analysis, bioinformatics, and more. Surprisingly, no efficient algorithm is known for uniform sampling; the only somewhat efficient algorithms available yield samples that are only approximately uniform, with running times that are unclear or suboptimal. In this work, we provide: (i) a near-optimal mixing time bound for a well-known random walk technique, (ii) the first efficient algorithm for truly uniform graphlet sampling, and (iii) the first sublinear-time algorithm for ε-uniform graphlet sampling.</p>\",\"PeriodicalId\":50922,\"journal\":{\"name\":\"ACM Transactions on Algorithms\",\"volume\":\"7 20\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Algorithms\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3596495\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3596495","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Efficient and Near-optimal Algorithms for Sampling Small Connected Subgraphs
We study the following problem: Given an integer k ≥ 3 and a simple graph G, sample a connected induced k-vertex subgraph of G uniformly at random. This is a fundamental graph mining primitive with applications in social network analysis, bioinformatics, and more. Surprisingly, no efficient algorithm is known for uniform sampling; the only somewhat efficient algorithms available yield samples that are only approximately uniform, with running times that are unclear or suboptimal. In this work, we provide: (i) a near-optimal mixing time bound for a well-known random walk technique, (ii) the first efficient algorithm for truly uniform graphlet sampling, and (iii) the first sublinear-time algorithm for ε-uniform graphlet sampling.
期刊介绍:
ACM Transactions on Algorithms welcomes submissions of original research of the highest quality dealing with algorithms that are inherently discrete and finite, and having mathematical content in a natural way, either in the objective or in the analysis. Most welcome are new algorithms and data structures, new and improved analyses, and complexity results. Specific areas of computation covered by the journal include
combinatorial searches and objects;
counting;
discrete optimization and approximation;
randomization and quantum computation;
parallel and distributed computation;
algorithms for
graphs,
geometry,
arithmetic,
number theory,
strings;
on-line analysis;
cryptography;
coding;
data compression;
learning algorithms;
methods of algorithmic analysis;
discrete algorithms for application areas such as
biology,
economics,
game theory,
communication,
computer systems and architecture,
hardware design,
scientific computing