在平面图形中命中拓扑小模型是固定参数可处理的

IF 0.9 3区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Petr A. Golovach, Giannos Stamoulis, Dimitrios M. Thilikos
{"title":"在平面图形中命中拓扑小模型是固定参数可处理的","authors":"Petr A. Golovach, Giannos Stamoulis, Dimitrios M. Thilikos","doi":"https://dl.acm.org/doi/10.1145/3583688","DOIUrl":null,"url":null,"abstract":"<p>For a finite collection of graphs ℱ, the ℱ-<span>TM-Deletion</span> problem has as input an <i>n</i>-vertex graph <i>G</i> and an integer <i>k</i> and asks whether there exists a set <i>S ⊆ V(G)</i> with <i>|S| ≤ k</i> such that <i>G \\ S</i> does not contain any of the graphs in ℱ as a topological minor. We prove that for every such ℱ, ℱ -<span>TM-Deletion</span> is fixed parameter tractable on planar graphs. Our algorithm runs in a 2<sup>𝒪(<i>k</i>2)</sup> ⋅ <i>n</i><sup>2</sup> time, or, alternatively, in 2<sup>𝒪(<i>k</i>)</sup> ⋅ <i>n</i><sup>4</sup> time. Our techniques can easily be extended to graphs that are embeddable on any fixed surface.</p>","PeriodicalId":50922,"journal":{"name":"ACM Transactions on Algorithms","volume":"7 23","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hitting Topological Minor Models in Planar Graphs is Fixed Parameter Tractable\",\"authors\":\"Petr A. Golovach, Giannos Stamoulis, Dimitrios M. Thilikos\",\"doi\":\"https://dl.acm.org/doi/10.1145/3583688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a finite collection of graphs ℱ, the ℱ-<span>TM-Deletion</span> problem has as input an <i>n</i>-vertex graph <i>G</i> and an integer <i>k</i> and asks whether there exists a set <i>S ⊆ V(G)</i> with <i>|S| ≤ k</i> such that <i>G \\\\ S</i> does not contain any of the graphs in ℱ as a topological minor. We prove that for every such ℱ, ℱ -<span>TM-Deletion</span> is fixed parameter tractable on planar graphs. Our algorithm runs in a 2<sup>𝒪(<i>k</i>2)</sup> ⋅ <i>n</i><sup>2</sup> time, or, alternatively, in 2<sup>𝒪(<i>k</i>)</sup> ⋅ <i>n</i><sup>4</sup> time. Our techniques can easily be extended to graphs that are embeddable on any fixed surface.</p>\",\"PeriodicalId\":50922,\"journal\":{\"name\":\"ACM Transactions on Algorithms\",\"volume\":\"7 23\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Algorithms\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3583688\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3583688","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

对于一个有限图集,以一个n顶点图G和一个整数k作为输入,问是否存在一个集S V(G),且|S|≤k,使得G \ S不包含任意一个图作为拓扑次元。证明了对于每一个这样的函数,在平面图上是固定参数可处理的。我们的算法运行时间为2个状态(k2)⋅n2,或者2个状态(k)⋅n4。我们的技术可以很容易地扩展到可嵌入在任何固定表面上的图形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hitting Topological Minor Models in Planar Graphs is Fixed Parameter Tractable

For a finite collection of graphs ℱ, the ℱ-TM-Deletion problem has as input an n-vertex graph G and an integer k and asks whether there exists a set S ⊆ V(G) with |S| ≤ k such that G \ S does not contain any of the graphs in ℱ as a topological minor. We prove that for every such ℱ, ℱ -TM-Deletion is fixed parameter tractable on planar graphs. Our algorithm runs in a 2𝒪(k2)n2 time, or, alternatively, in 2𝒪(k)n4 time. Our techniques can easily be extended to graphs that are embeddable on any fixed surface.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Algorithms
ACM Transactions on Algorithms COMPUTER SCIENCE, THEORY & METHODS-MATHEMATICS, APPLIED
CiteScore
3.30
自引率
0.00%
发文量
50
审稿时长
6-12 weeks
期刊介绍: ACM Transactions on Algorithms welcomes submissions of original research of the highest quality dealing with algorithms that are inherently discrete and finite, and having mathematical content in a natural way, either in the objective or in the analysis. Most welcome are new algorithms and data structures, new and improved analyses, and complexity results. Specific areas of computation covered by the journal include combinatorial searches and objects; counting; discrete optimization and approximation; randomization and quantum computation; parallel and distributed computation; algorithms for graphs, geometry, arithmetic, number theory, strings; on-line analysis; cryptography; coding; data compression; learning algorithms; methods of algorithmic analysis; discrete algorithms for application areas such as biology, economics, game theory, communication, computer systems and architecture, hardware design, scientific computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信