Hopcroft问题,Log-Star剃须,2D分数级联和决策树

IF 0.9 3区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Timothy M. Chan, Da Wei Zheng
{"title":"Hopcroft问题,Log-Star剃须,2D分数级联和决策树","authors":"Timothy M. Chan, Da Wei Zheng","doi":"https://dl.acm.org/doi/10.1145/3591357","DOIUrl":null,"url":null,"abstract":"<p>We revisit Hopcroft’s problem and related fundamental problems about geometric range searching. Given <i>n</i> points and <i>n</i> lines in the plane, we show how to count the number of point-line incidence pairs or the number of point-above-line pairs in <i>O</i>(<i>n</i><sup>4/3</sup>) time, which matches the conjectured lower bound and improves the best previous time bound of \\(n^{4/3}2^{O(\\log ^*n)} \\) obtained almost 30 years ago by Matoušek. </p><p>We describe two interesting and different ways to achieve the result: the first is randomized and uses a new 2D version of fractional cascading for arrangements of lines; the second is deterministic and uses decision trees in a manner inspired by the sorting technique of Fredman (1976). The second approach extends to any constant dimension. </p><p>Many consequences follow from these new ideas: for example, we obtain an <i>O</i>(<i>n</i><sup>4/3</sup>)-time algorithm for line segment intersection counting in the plane, <i>O</i>(<i>n</i><sup>4/3</sup>)-time randomized algorithms for distance selection in the plane and bichromatic closest pair and Euclidean minimum spanning tree in three or four dimensions, and a randomized data structure for halfplane range counting in the plane with <i>O</i>(<i>n</i><sup>4/3</sup>) preprocessing time and space and <i>O</i>(<i>n</i><sup>1/3</sup>) query time.</p>","PeriodicalId":50922,"journal":{"name":"ACM Transactions on Algorithms","volume":"8 2","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hopcroft’s Problem, Log-Star Shaving, 2D Fractional Cascading, and Decision Trees\",\"authors\":\"Timothy M. Chan, Da Wei Zheng\",\"doi\":\"https://dl.acm.org/doi/10.1145/3591357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We revisit Hopcroft’s problem and related fundamental problems about geometric range searching. Given <i>n</i> points and <i>n</i> lines in the plane, we show how to count the number of point-line incidence pairs or the number of point-above-line pairs in <i>O</i>(<i>n</i><sup>4/3</sup>) time, which matches the conjectured lower bound and improves the best previous time bound of \\\\(n^{4/3}2^{O(\\\\log ^*n)} \\\\) obtained almost 30 years ago by Matoušek. </p><p>We describe two interesting and different ways to achieve the result: the first is randomized and uses a new 2D version of fractional cascading for arrangements of lines; the second is deterministic and uses decision trees in a manner inspired by the sorting technique of Fredman (1976). The second approach extends to any constant dimension. </p><p>Many consequences follow from these new ideas: for example, we obtain an <i>O</i>(<i>n</i><sup>4/3</sup>)-time algorithm for line segment intersection counting in the plane, <i>O</i>(<i>n</i><sup>4/3</sup>)-time randomized algorithms for distance selection in the plane and bichromatic closest pair and Euclidean minimum spanning tree in three or four dimensions, and a randomized data structure for halfplane range counting in the plane with <i>O</i>(<i>n</i><sup>4/3</sup>) preprocessing time and space and <i>O</i>(<i>n</i><sup>1/3</sup>) query time.</p>\",\"PeriodicalId\":50922,\"journal\":{\"name\":\"ACM Transactions on Algorithms\",\"volume\":\"8 2\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Algorithms\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3591357\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3591357","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们重新审视Hopcroft问题和有关几何距离搜索的基本问题。给定平面上的n个点和n条线,我们展示了如何在O(n4/3)时间内计算点线入射对或点线上对的数量,这与推测的下界相匹配,并改进了Matoušek在近30年前获得的最佳时间界\(n^{4/3}2^{O(\log ^*n)} \)。我们描述了两种有趣且不同的方法来实现结果:第一种是随机的,并使用新的2D版本的分数级联来排列线条;第二种是确定性的,以一种受Fredman(1976)排序技术启发的方式使用决策树。第二种方法可以扩展到任何恒定的维度。这些新思想带来了许多结果:例如,我们获得了平面上线段相交计数的O(n4/3)时间算法,平面和双色最接近对以及三维或四维欧几里得最小生成树的距离选择的O(n4/3)时间随机算法,以及平面上半平面距离计数的随机数据结构,预处理时间和空间为O(n4/3),查询时间为O(n1/3)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hopcroft’s Problem, Log-Star Shaving, 2D Fractional Cascading, and Decision Trees

We revisit Hopcroft’s problem and related fundamental problems about geometric range searching. Given n points and n lines in the plane, we show how to count the number of point-line incidence pairs or the number of point-above-line pairs in O(n4/3) time, which matches the conjectured lower bound and improves the best previous time bound of \(n^{4/3}2^{O(\log ^*n)} \) obtained almost 30 years ago by Matoušek.

We describe two interesting and different ways to achieve the result: the first is randomized and uses a new 2D version of fractional cascading for arrangements of lines; the second is deterministic and uses decision trees in a manner inspired by the sorting technique of Fredman (1976). The second approach extends to any constant dimension.

Many consequences follow from these new ideas: for example, we obtain an O(n4/3)-time algorithm for line segment intersection counting in the plane, O(n4/3)-time randomized algorithms for distance selection in the plane and bichromatic closest pair and Euclidean minimum spanning tree in three or four dimensions, and a randomized data structure for halfplane range counting in the plane with O(n4/3) preprocessing time and space and O(n1/3) query time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Algorithms
ACM Transactions on Algorithms COMPUTER SCIENCE, THEORY & METHODS-MATHEMATICS, APPLIED
CiteScore
3.30
自引率
0.00%
发文量
50
审稿时长
6-12 weeks
期刊介绍: ACM Transactions on Algorithms welcomes submissions of original research of the highest quality dealing with algorithms that are inherently discrete and finite, and having mathematical content in a natural way, either in the objective or in the analysis. Most welcome are new algorithms and data structures, new and improved analyses, and complexity results. Specific areas of computation covered by the journal include combinatorial searches and objects; counting; discrete optimization and approximation; randomization and quantum computation; parallel and distributed computation; algorithms for graphs, geometry, arithmetic, number theory, strings; on-line analysis; cryptography; coding; data compression; learning algorithms; methods of algorithmic analysis; discrete algorithms for application areas such as biology, economics, game theory, communication, computer systems and architecture, hardware design, scientific computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信