在O -美女(2.7k)中检测大小为k的反馈顶点集

IF 0.9 3区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Jason Li, Jesper Nederlof
{"title":"在O -美女(2.7k)中检测大小为k的反馈顶点集","authors":"Jason Li, Jesper Nederlof","doi":"https://dl.acm.org/doi/10.1145/3504027","DOIUrl":null,"url":null,"abstract":"<p>In the Feedback Vertex Set (FVS) problem, one is given an undirected graph <i>G</i> and an integer <i>k</i>, and one needs to determine whether there exists a set of <i>k</i> vertices that intersects all cycles of <i>G</i> (a so-called feedback vertex set). Feedback Vertex Set is one of the most central problems in parameterized complexity: It served as an excellent testbed for many important algorithmic techniques in the field such as Iterative Compression [Guo et al. (JCSS’06)], Randomized Branching [Becker et al. (J. Artif. Intell. Res’00)] and Cut&amp;Count [Cygan et al. (FOCS’11)]. In particular, there has been a long race for the smallest dependence <i>f(k)</i> in run times of the type <i>O<sup>⋆</sup> (f(k))</i>, where the <i>O<sup>⋆</sup></i> notation omits factors polynomial in <i>n</i>. This race seemed to have reached a conclusion in 2011, when a randomized <i>O</i><sup>⋆</sup> (3<sup><i>k</i></sup>) time algorithm based on Cut&amp;Count was introduced.</p><p>In this work, we show the contrary and give a <i>O<sup>⋆</sup> (2.7<i>k</i>)</i> time randomized algorithm. Our algorithm combines all mentioned techniques with substantial new ideas: First, we show that, given a feedback vertex set of size <i>k</i> of bounded average degree, a tree decomposition of width <i>(1-Ω (1))k</i> can be found in polynomial time. Second, we give a randomized branching strategy inspired by the one from [Becker et al. (J. Artif. Intell. Res’00)] to reduce to the aforementioned bounded average degree setting. Third, we obtain significant run time improvements by employing fast matrix multiplication.</p>","PeriodicalId":50922,"journal":{"name":"ACM Transactions on Algorithms","volume":"1 12","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting Feedback Vertex Sets of Size k in O⋆ (2.7k) Time\",\"authors\":\"Jason Li, Jesper Nederlof\",\"doi\":\"https://dl.acm.org/doi/10.1145/3504027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the Feedback Vertex Set (FVS) problem, one is given an undirected graph <i>G</i> and an integer <i>k</i>, and one needs to determine whether there exists a set of <i>k</i> vertices that intersects all cycles of <i>G</i> (a so-called feedback vertex set). Feedback Vertex Set is one of the most central problems in parameterized complexity: It served as an excellent testbed for many important algorithmic techniques in the field such as Iterative Compression [Guo et al. (JCSS’06)], Randomized Branching [Becker et al. (J. Artif. Intell. Res’00)] and Cut&amp;Count [Cygan et al. (FOCS’11)]. In particular, there has been a long race for the smallest dependence <i>f(k)</i> in run times of the type <i>O<sup>⋆</sup> (f(k))</i>, where the <i>O<sup>⋆</sup></i> notation omits factors polynomial in <i>n</i>. This race seemed to have reached a conclusion in 2011, when a randomized <i>O</i><sup>⋆</sup> (3<sup><i>k</i></sup>) time algorithm based on Cut&amp;Count was introduced.</p><p>In this work, we show the contrary and give a <i>O<sup>⋆</sup> (2.7<i>k</i>)</i> time randomized algorithm. Our algorithm combines all mentioned techniques with substantial new ideas: First, we show that, given a feedback vertex set of size <i>k</i> of bounded average degree, a tree decomposition of width <i>(1-Ω (1))k</i> can be found in polynomial time. Second, we give a randomized branching strategy inspired by the one from [Becker et al. (J. Artif. Intell. Res’00)] to reduce to the aforementioned bounded average degree setting. Third, we obtain significant run time improvements by employing fast matrix multiplication.</p>\",\"PeriodicalId\":50922,\"journal\":{\"name\":\"ACM Transactions on Algorithms\",\"volume\":\"1 12\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Algorithms\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3504027\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3504027","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在反馈顶点集(FVS)问题中,给定一个无向图G和一个整数k,需要确定是否存在与G的所有循环相交的k个顶点的集合(即所谓的反馈顶点集)。反馈顶点集是参数化复杂性中最核心的问题之一:它是该领域许多重要算法技术的优秀测试平台,如迭代压缩[Guo等人(JCSS ' 06)],随机分支[Becker等人]。智能。Res ' 00)和Cut&Count [Cygan et al. (FOCS ' 11)]。尤其值得一提的是,对于O -百科(f(k))类型的运行时间中最小的依赖f(k)一直存在着一场旷日持久的竞赛,其中O -百科符号省略了n中的多项式因子。这场竞赛似乎在2011年得出了结论,当时引入了基于Cut&Count的随机O -百科(3k)时间算法。在这项工作中,我们展示了相反的情况,并给出了O - (2.7k)时间随机化算法。我们的算法将所有提到的技术与实质性的新思想结合起来:首先,我们证明,给定一个大小为k的有界平均度的反馈顶点集,可以在多项式时间内找到宽度为(1-Ω (1))k的树分解。其次,我们给出了一个受[Becker等人]启发的随机分支策略。智能。(Res ' 00)]以降低到上述有界平均度设置。第三,我们通过使用快速矩阵乘法获得了显著的运行时间改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting Feedback Vertex Sets of Size k in O⋆ (2.7k) Time

In the Feedback Vertex Set (FVS) problem, one is given an undirected graph G and an integer k, and one needs to determine whether there exists a set of k vertices that intersects all cycles of G (a so-called feedback vertex set). Feedback Vertex Set is one of the most central problems in parameterized complexity: It served as an excellent testbed for many important algorithmic techniques in the field such as Iterative Compression [Guo et al. (JCSS’06)], Randomized Branching [Becker et al. (J. Artif. Intell. Res’00)] and Cut&Count [Cygan et al. (FOCS’11)]. In particular, there has been a long race for the smallest dependence f(k) in run times of the type O (f(k)), where the O notation omits factors polynomial in n. This race seemed to have reached a conclusion in 2011, when a randomized O (3k) time algorithm based on Cut&Count was introduced.

In this work, we show the contrary and give a O (2.7k) time randomized algorithm. Our algorithm combines all mentioned techniques with substantial new ideas: First, we show that, given a feedback vertex set of size k of bounded average degree, a tree decomposition of width (1-Ω (1))k can be found in polynomial time. Second, we give a randomized branching strategy inspired by the one from [Becker et al. (J. Artif. Intell. Res’00)] to reduce to the aforementioned bounded average degree setting. Third, we obtain significant run time improvements by employing fast matrix multiplication.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Algorithms
ACM Transactions on Algorithms COMPUTER SCIENCE, THEORY & METHODS-MATHEMATICS, APPLIED
CiteScore
3.30
自引率
0.00%
发文量
50
审稿时长
6-12 weeks
期刊介绍: ACM Transactions on Algorithms welcomes submissions of original research of the highest quality dealing with algorithms that are inherently discrete and finite, and having mathematical content in a natural way, either in the objective or in the analysis. Most welcome are new algorithms and data structures, new and improved analyses, and complexity results. Specific areas of computation covered by the journal include combinatorial searches and objects; counting; discrete optimization and approximation; randomization and quantum computation; parallel and distributed computation; algorithms for graphs, geometry, arithmetic, number theory, strings; on-line analysis; cryptography; coding; data compression; learning algorithms; methods of algorithmic analysis; discrete algorithms for application areas such as biology, economics, game theory, communication, computer systems and architecture, hardware design, scientific computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信