分支收缩超图中的最小割和最小k割

IF 0.9 3区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Kyle Fox, Debmalya Panigrahi, Fred Zhang
{"title":"分支收缩超图中的最小割和最小k割","authors":"Kyle Fox, Debmalya Panigrahi, Fred Zhang","doi":"https://dl.acm.org/doi/10.1145/3570162","DOIUrl":null,"url":null,"abstract":"<p>On hypergraphs with <i>m</i> hyperedges and <i>n</i> vertices, where <i>p</i> denotes the total size of the hyperedges, we provide the following results: <p><table border=\"0\" list-type=\"bullet\" width=\"95%\"><tr><td valign=\"top\"><p>•</p></td><td colspan=\"5\" valign=\"top\"><p>We give an algorithm that runs in \\(\\widetilde{O}\\left(mn^{2k-2}\\right) \\) time for finding a minimum <i>k</i>-cut in hypergraphs of arbitrary rank. This algorithm betters the previous best running time for the minimum <i>k</i>-cut problem, for <i>k</i> &gt; 2.</p></td></tr><tr><td valign=\"top\"><p>•</p></td><td colspan=\"5\" valign=\"top\"><p>We give an algorithm that runs in \\(\\widetilde{O}\\left(n^{\\max \\lbrace r,2k-2\\rbrace }\\right) \\) time for finding a minimum <i>k</i>-cut in hypergraphs of constant rank <i>r</i>. This algorithm betters the previous best running times for both the minimum cut and minimum <i>k</i>-cut problems for dense hypergraphs.</p></td></tr></table></p>\nBoth of our algorithms are Monte Carlo, <i>i.e.</i>, they return a minimum <i>k</i>-cut (or minimum cut) with high probability. These algorithms are obtained as instantiations of a generic <i>branching randomized contraction</i> technique on hypergraphs, which extends the celebrated work of Karger and Stein on recursive contractions in graphs. Our techniques and results also extend to the problems of minimum hedge-cut and minimum hedge-<i>k</i>-cut on hedgegraphs, which generalize hypergraphs.</p>","PeriodicalId":50922,"journal":{"name":"ACM Transactions on Algorithms","volume":"2 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimum Cut and Minimum k-Cut in Hypergraphs via Branching Contractions\",\"authors\":\"Kyle Fox, Debmalya Panigrahi, Fred Zhang\",\"doi\":\"https://dl.acm.org/doi/10.1145/3570162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>On hypergraphs with <i>m</i> hyperedges and <i>n</i> vertices, where <i>p</i> denotes the total size of the hyperedges, we provide the following results: <p><table border=\\\"0\\\" list-type=\\\"bullet\\\" width=\\\"95%\\\"><tr><td valign=\\\"top\\\"><p>•</p></td><td colspan=\\\"5\\\" valign=\\\"top\\\"><p>We give an algorithm that runs in \\\\(\\\\widetilde{O}\\\\left(mn^{2k-2}\\\\right) \\\\) time for finding a minimum <i>k</i>-cut in hypergraphs of arbitrary rank. This algorithm betters the previous best running time for the minimum <i>k</i>-cut problem, for <i>k</i> &gt; 2.</p></td></tr><tr><td valign=\\\"top\\\"><p>•</p></td><td colspan=\\\"5\\\" valign=\\\"top\\\"><p>We give an algorithm that runs in \\\\(\\\\widetilde{O}\\\\left(n^{\\\\max \\\\lbrace r,2k-2\\\\rbrace }\\\\right) \\\\) time for finding a minimum <i>k</i>-cut in hypergraphs of constant rank <i>r</i>. This algorithm betters the previous best running times for both the minimum cut and minimum <i>k</i>-cut problems for dense hypergraphs.</p></td></tr></table></p>\\nBoth of our algorithms are Monte Carlo, <i>i.e.</i>, they return a minimum <i>k</i>-cut (or minimum cut) with high probability. These algorithms are obtained as instantiations of a generic <i>branching randomized contraction</i> technique on hypergraphs, which extends the celebrated work of Karger and Stein on recursive contractions in graphs. Our techniques and results also extend to the problems of minimum hedge-cut and minimum hedge-<i>k</i>-cut on hedgegraphs, which generalize hypergraphs.</p>\",\"PeriodicalId\":50922,\"journal\":{\"name\":\"ACM Transactions on Algorithms\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Algorithms\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3570162\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3570162","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

对于具有m个超边和n个顶点的超图,其中p表示超边的总大小,我们提供了以下结果:•我们给出了一个在\(\widetilde{O}\left(mn^{2k-2}\right) \)时间内运行的算法,用于在任意秩的超图中找到最小k-cut。该算法优于之前的最小k切问题的最佳运行时间,对于k &gt;2.•我们给出了一个运行时间为\(\widetilde{O}\left(n^{\max \lbrace r,2k-2\rbrace }\right) \)的算法,用于在常数秩r的超图中寻找最小k-切。该算法优于先前的最小k-切和最小k-切问题的最佳运行时间。我们的两个算法都是蒙特卡罗算法,也就是说,它们以高概率返回最小k-cut(或最小切割)。这些算法作为超图上一般分支随机收缩技术的实例,扩展了Karger和Stein关于图上递归收缩的著名工作。我们的技术和结果也推广到对冲图上的最小对冲切割和最小对冲k-切割问题,这是超图的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimum Cut and Minimum k-Cut in Hypergraphs via Branching Contractions

On hypergraphs with m hyperedges and n vertices, where p denotes the total size of the hyperedges, we provide the following results:

We give an algorithm that runs in \(\widetilde{O}\left(mn^{2k-2}\right) \) time for finding a minimum k-cut in hypergraphs of arbitrary rank. This algorithm betters the previous best running time for the minimum k-cut problem, for k > 2.

We give an algorithm that runs in \(\widetilde{O}\left(n^{\max \lbrace r,2k-2\rbrace }\right) \) time for finding a minimum k-cut in hypergraphs of constant rank r. This algorithm betters the previous best running times for both the minimum cut and minimum k-cut problems for dense hypergraphs.

Both of our algorithms are Monte Carlo, i.e., they return a minimum k-cut (or minimum cut) with high probability. These algorithms are obtained as instantiations of a generic branching randomized contraction technique on hypergraphs, which extends the celebrated work of Karger and Stein on recursive contractions in graphs. Our techniques and results also extend to the problems of minimum hedge-cut and minimum hedge-k-cut on hedgegraphs, which generalize hypergraphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Algorithms
ACM Transactions on Algorithms COMPUTER SCIENCE, THEORY & METHODS-MATHEMATICS, APPLIED
CiteScore
3.30
自引率
0.00%
发文量
50
审稿时长
6-12 weeks
期刊介绍: ACM Transactions on Algorithms welcomes submissions of original research of the highest quality dealing with algorithms that are inherently discrete and finite, and having mathematical content in a natural way, either in the objective or in the analysis. Most welcome are new algorithms and data structures, new and improved analyses, and complexity results. Specific areas of computation covered by the journal include combinatorial searches and objects; counting; discrete optimization and approximation; randomization and quantum computation; parallel and distributed computation; algorithms for graphs, geometry, arithmetic, number theory, strings; on-line analysis; cryptography; coding; data compression; learning algorithms; methods of algorithmic analysis; discrete algorithms for application areas such as biology, economics, game theory, communication, computer systems and architecture, hardware design, scientific computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信