比二次曲率衰减更快的引力瞬子。我

IF 4.9 1区 数学 Q1 MATHEMATICS
Gao Chen, Xiuxiong Chen
{"title":"比二次曲率衰减更快的引力瞬子。我","authors":"Gao Chen, Xiuxiong Chen","doi":"10.4310/acta.2021.v227.n2.a2","DOIUrl":null,"url":null,"abstract":"In this paper, we study gravitational instantons (i.e., complete hyperkähler $4$‑manifolds with faster than quadratic curvature decay). We prove three main theorems: (1) Any gravitational instanton must have one of the following known ends: ALE, ALF, ALG, and ALH. (2) In the ALG and ALH non-splitting cases, it must be biholomorphic to a compact complex elliptic surface minus a divisor. Thus, we confirm a long-standing question of Yau in the ALG and ALH cases. (3) In the ALF‑$D_k$ case, it must have an $O(4)$‑multiplet.","PeriodicalId":50895,"journal":{"name":"Acta Mathematica","volume":"4 8","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Gravitational instantons with faster than quadratic curvature decay. I\",\"authors\":\"Gao Chen, Xiuxiong Chen\",\"doi\":\"10.4310/acta.2021.v227.n2.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study gravitational instantons (i.e., complete hyperkähler $4$‑manifolds with faster than quadratic curvature decay). We prove three main theorems: (1) Any gravitational instanton must have one of the following known ends: ALE, ALF, ALG, and ALH. (2) In the ALG and ALH non-splitting cases, it must be biholomorphic to a compact complex elliptic surface minus a divisor. Thus, we confirm a long-standing question of Yau in the ALG and ALH cases. (3) In the ALF‑$D_k$ case, it must have an $O(4)$‑multiplet.\",\"PeriodicalId\":50895,\"journal\":{\"name\":\"Acta Mathematica\",\"volume\":\"4 8\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2022-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/acta.2021.v227.n2.a2\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/acta.2021.v227.n2.a2","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,我们研究了引力瞬子(即,比二次曲率衰减更快的完全hyperkähler $4$ -流形)。我们证明了三个主要定理:(1)任何引力瞬子必须有以下已知端点之一:ALE, ALF, ALG和ALH。(2)在ALG和ALH非分裂情况下,它必须是生物全纯的紧复椭圆曲面减去一个除数。因此,我们在ALG和ALH病例中确认了一个长期存在的问题。(3)在ALF - $D_k$的情况下,它必须有一个$O(4)$ - multiplet。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gravitational instantons with faster than quadratic curvature decay. I
In this paper, we study gravitational instantons (i.e., complete hyperkähler $4$‑manifolds with faster than quadratic curvature decay). We prove three main theorems: (1) Any gravitational instanton must have one of the following known ends: ALE, ALF, ALG, and ALH. (2) In the ALG and ALH non-splitting cases, it must be biholomorphic to a compact complex elliptic surface minus a divisor. Thus, we confirm a long-standing question of Yau in the ALG and ALH cases. (3) In the ALF‑$D_k$ case, it must have an $O(4)$‑multiplet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Mathematica
Acta Mathematica 数学-数学
CiteScore
6.00
自引率
2.70%
发文量
6
审稿时长
>12 weeks
期刊介绍: Publishes original research papers of the highest quality in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信