矩形矩阵$\{1,2,3,1^{k}\}$-逆的$W$加权概化

Geeta Chowdhry, Falguni Roy
{"title":"矩形矩阵$\\{1,2,3,1^{k}\\}$-逆的$W$加权概化","authors":"Geeta Chowdhry, Falguni Roy","doi":"arxiv-2312.01370","DOIUrl":null,"url":null,"abstract":"This paper presents a novel extension of the $\\{1,2,3,1^{k}\\}$-inverse\nconcept to complex rectangular matrices, denoted as a $W$-weighted\n$\\{1,2,3,1^{k}\\}$-inverse (or $\\{1',2',3',{1^{k}}'\\}$-inverse), where the\nweight $W \\in \\mathbb{C}^{n \\times m}$. The study begins by introducing a\nweighted $\\{1,2,3\\}$-inverse (or $\\{1',2',3'\\}$-inverse) along with its\nrepresentations and characterizations. The paper establishes criteria for the\nexistence of $\\{1',2',3'\\}$-inverses and extends the criteria to\n$\\{1'\\}$-inverses. It is further demonstrated that $A\\in \\mathbb{C}^{m \\times\nn}$ admits a $\\{1',2',3',{1^{k}}'\\}$-inverse if and only if $r(WAW)=r(A)$,\nwhere $r(\\cdot)$ is the rank of a matrix. The work additionally establishes\nvarious representations for the set $A\\{ 1',2',3',{1^{k}}'\\}$, including\ncanonical representations derived through singular value and core-nilpotent\ndecompositions. This, in turn, yields distinctive canonical representations for\nthe set $A\\{ 1,2,3,{1^{k}}\\}$. $\\{ 1',2',3',{1^{k}}'\\}$-inverse is shown to be\nunique if and only if it has index $0$ or $1$, reducing it to the weighted core\ninverse. Moreover, the paper investigates properties and characterizations of\n$\\{1',2',3',{1^{k}}'\\}$-inverses, which then results in new insights into the\ncharacterizations of the set $A\\{ 1,2,3,{1^{k}}\\}$.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":" 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A $W$-weighted generalization of $\\\\{1,2,3,1^{k}\\\\}$-inverse for rectangular matrices\",\"authors\":\"Geeta Chowdhry, Falguni Roy\",\"doi\":\"arxiv-2312.01370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel extension of the $\\\\{1,2,3,1^{k}\\\\}$-inverse\\nconcept to complex rectangular matrices, denoted as a $W$-weighted\\n$\\\\{1,2,3,1^{k}\\\\}$-inverse (or $\\\\{1',2',3',{1^{k}}'\\\\}$-inverse), where the\\nweight $W \\\\in \\\\mathbb{C}^{n \\\\times m}$. The study begins by introducing a\\nweighted $\\\\{1,2,3\\\\}$-inverse (or $\\\\{1',2',3'\\\\}$-inverse) along with its\\nrepresentations and characterizations. The paper establishes criteria for the\\nexistence of $\\\\{1',2',3'\\\\}$-inverses and extends the criteria to\\n$\\\\{1'\\\\}$-inverses. It is further demonstrated that $A\\\\in \\\\mathbb{C}^{m \\\\times\\nn}$ admits a $\\\\{1',2',3',{1^{k}}'\\\\}$-inverse if and only if $r(WAW)=r(A)$,\\nwhere $r(\\\\cdot)$ is the rank of a matrix. The work additionally establishes\\nvarious representations for the set $A\\\\{ 1',2',3',{1^{k}}'\\\\}$, including\\ncanonical representations derived through singular value and core-nilpotent\\ndecompositions. This, in turn, yields distinctive canonical representations for\\nthe set $A\\\\{ 1,2,3,{1^{k}}\\\\}$. $\\\\{ 1',2',3',{1^{k}}'\\\\}$-inverse is shown to be\\nunique if and only if it has index $0$ or $1$, reducing it to the weighted core\\ninverse. Moreover, the paper investigates properties and characterizations of\\n$\\\\{1',2',3',{1^{k}}'\\\\}$-inverses, which then results in new insights into the\\ncharacterizations of the set $A\\\\{ 1,2,3,{1^{k}}\\\\}$.\",\"PeriodicalId\":501061,\"journal\":{\"name\":\"arXiv - CS - Numerical Analysis\",\"volume\":\" 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.01370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.01370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文将$\{1,2,3,1^{k}\}$-逆概念推广到复矩形矩阵,表示为$W$加权$\{1,2,3,1^{k}\}$-逆(或$\{1',2',3',{1^{k}}'\}$-逆),其中$W \在\mathbb{C}^{n \乘以m}$中的权重。本研究首先引入加权$\{1,2,3\}$-逆(或$\{1',2',3'\}$-逆)及其表示和表征。本文建立了$\{1',2',3'\}$-逆的存在性判据,并将该判据推广到$\{1'\}$-逆。进一步证明了$A\in \mathbb{C}^{m \timesn}$允许有$\{1',2',3',{1^{k}}'\}$-逆当且仅当$r(WAW)=r(A)$,其中$r(\cdot)$是矩阵的秩。该工作还建立了集合$A\{1',2',3',{1^{k}} \}$的各种表示,包括通过奇异值和核幂零分解得到的正则表示。这反过来又产生了集合$A\{1,2,3,{1^{k}}\}$的独特规范表示。$\{1',2',3',{1^{k}}'\}$-inverse被证明是唯一的当且仅当它具有索引$0$或$1$,将其简化为加权逆。此外,本文研究了$\{1',2',3',{1^{k}}'\}$-逆的性质和表征,从而对集合$A\{1,2,3,{1^{k}}\}$的表征有了新的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A $W$-weighted generalization of $\{1,2,3,1^{k}\}$-inverse for rectangular matrices
This paper presents a novel extension of the $\{1,2,3,1^{k}\}$-inverse concept to complex rectangular matrices, denoted as a $W$-weighted $\{1,2,3,1^{k}\}$-inverse (or $\{1',2',3',{1^{k}}'\}$-inverse), where the weight $W \in \mathbb{C}^{n \times m}$. The study begins by introducing a weighted $\{1,2,3\}$-inverse (or $\{1',2',3'\}$-inverse) along with its representations and characterizations. The paper establishes criteria for the existence of $\{1',2',3'\}$-inverses and extends the criteria to $\{1'\}$-inverses. It is further demonstrated that $A\in \mathbb{C}^{m \times n}$ admits a $\{1',2',3',{1^{k}}'\}$-inverse if and only if $r(WAW)=r(A)$, where $r(\cdot)$ is the rank of a matrix. The work additionally establishes various representations for the set $A\{ 1',2',3',{1^{k}}'\}$, including canonical representations derived through singular value and core-nilpotent decompositions. This, in turn, yields distinctive canonical representations for the set $A\{ 1,2,3,{1^{k}}\}$. $\{ 1',2',3',{1^{k}}'\}$-inverse is shown to be unique if and only if it has index $0$ or $1$, reducing it to the weighted core inverse. Moreover, the paper investigates properties and characterizations of $\{1',2',3',{1^{k}}'\}$-inverses, which then results in new insights into the characterizations of the set $A\{ 1,2,3,{1^{k}}\}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信