大型Sylvester方程的低阶ADI迭代中的不精确线性解

Patrick Kürschner
{"title":"大型Sylvester方程的低阶ADI迭代中的不精确线性解","authors":"Patrick Kürschner","doi":"arxiv-2312.02891","DOIUrl":null,"url":null,"abstract":"We consider the low-rank alternating directions implicit (ADI) iteration for\napproximately solving large-scale algebraic Sylvester equations. Inside every\niteration step of this iterative process a pair of linear systems of equations\nhas to be solved. We investigate the situation when those inner linear systems\nare solved inexactly by an iterative methods such as, for example,\npreconditioned Krylov subspace methods. The main contribution of this work are\nthresholds for the required accuracies regarding the inner linear systems which\ndictate when the employed inner Krylov subspace methods can be safely\nterminated. The goal is to save computational effort by solving the inner\nlinear system as inaccurate as possible without endangering the functionality\nof the low-rank Sylvester-ADI method. Ideally, the inexact ADI method mimics\nthe convergence behaviour of the more expensive exact ADI method, where the\nlinear systems are solved directly. Alongside the theoretical results, also\nstrategies for an actual practical implementation of the stopping criteria are\ndeveloped. Numerical experiments confirm the effectiveness of the proposed\nstrategies.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":" 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inexact linear solves in the low-rank ADI iteration for large Sylvester equations\",\"authors\":\"Patrick Kürschner\",\"doi\":\"arxiv-2312.02891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the low-rank alternating directions implicit (ADI) iteration for\\napproximately solving large-scale algebraic Sylvester equations. Inside every\\niteration step of this iterative process a pair of linear systems of equations\\nhas to be solved. We investigate the situation when those inner linear systems\\nare solved inexactly by an iterative methods such as, for example,\\npreconditioned Krylov subspace methods. The main contribution of this work are\\nthresholds for the required accuracies regarding the inner linear systems which\\ndictate when the employed inner Krylov subspace methods can be safely\\nterminated. The goal is to save computational effort by solving the inner\\nlinear system as inaccurate as possible without endangering the functionality\\nof the low-rank Sylvester-ADI method. Ideally, the inexact ADI method mimics\\nthe convergence behaviour of the more expensive exact ADI method, where the\\nlinear systems are solved directly. Alongside the theoretical results, also\\nstrategies for an actual practical implementation of the stopping criteria are\\ndeveloped. Numerical experiments confirm the effectiveness of the proposed\\nstrategies.\",\"PeriodicalId\":501061,\"journal\":{\"name\":\"arXiv - CS - Numerical Analysis\",\"volume\":\" 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.02891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.02891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了近似求解大规模代数Sylvester方程的低秩交替方向隐式迭代法。在该迭代过程的每一步迭代中,都需要求解一对线性方程组。我们研究了这些内线性系统用迭代方法不精确求解的情况,例如,预置的Krylov子空间方法。这项工作的主要贡献是内线性系统所需精度的阈值,这决定了所采用的内克雷洛夫子空间方法何时可以安全终止。目标是通过在不危及低秩Sylvester-ADI方法的功能的情况下尽可能不准确地求解内线系统来节省计算工作量。理想情况下,不精确ADI方法模仿更昂贵的精确ADI方法的收敛行为,其中直接求解线性系统。除了理论结果外,还制定了实际实施停止准则的策略。数值实验验证了所提策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inexact linear solves in the low-rank ADI iteration for large Sylvester equations
We consider the low-rank alternating directions implicit (ADI) iteration for approximately solving large-scale algebraic Sylvester equations. Inside every iteration step of this iterative process a pair of linear systems of equations has to be solved. We investigate the situation when those inner linear systems are solved inexactly by an iterative methods such as, for example, preconditioned Krylov subspace methods. The main contribution of this work are thresholds for the required accuracies regarding the inner linear systems which dictate when the employed inner Krylov subspace methods can be safely terminated. The goal is to save computational effort by solving the inner linear system as inaccurate as possible without endangering the functionality of the low-rank Sylvester-ADI method. Ideally, the inexact ADI method mimics the convergence behaviour of the more expensive exact ADI method, where the linear systems are solved directly. Alongside the theoretical results, also strategies for an actual practical implementation of the stopping criteria are developed. Numerical experiments confirm the effectiveness of the proposed strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信