Akhiezer迭代

Cade Ballew, Thomas Trogdon
{"title":"Akhiezer迭代","authors":"Cade Ballew, Thomas Trogdon","doi":"arxiv-2312.02384","DOIUrl":null,"url":null,"abstract":"We develop the Akhiezer iteration, a generalization of the classical\nChebyshev iteration, for the inner product-free, iterative solution of\nindefinite linear systems using orthogonal polynomials for measures supported\non multiple, disjoint intervals. The iteration applies to shifted linear solves\nand can then be used for efficient matrix function approximation. Using the\nasymptotics of orthogonal polynomials, error bounds are provided. A key\ncomponent in the efficiency of the method is the ability to compute the first\n$k$ orthogonal polynomial recurrence coefficients and the first $k$ weighted\nStieltjes transforms of these orthogonal polynomials in $\\mathrm{O}(k)$\ncomplexity using a numerical Riemann--Hilbert approach. For a special class of\northogonal polynomials, the Akhiezer polynomials, the method can be sped up\nsignificantly, with the greatest speedup occurring in the two interval case\nwhere important formulae of Akhiezer are employed and the Riemann--Hilbert\napproach is bypassed.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":" 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Akhiezer iteration\",\"authors\":\"Cade Ballew, Thomas Trogdon\",\"doi\":\"arxiv-2312.02384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop the Akhiezer iteration, a generalization of the classical\\nChebyshev iteration, for the inner product-free, iterative solution of\\nindefinite linear systems using orthogonal polynomials for measures supported\\non multiple, disjoint intervals. The iteration applies to shifted linear solves\\nand can then be used for efficient matrix function approximation. Using the\\nasymptotics of orthogonal polynomials, error bounds are provided. A key\\ncomponent in the efficiency of the method is the ability to compute the first\\n$k$ orthogonal polynomial recurrence coefficients and the first $k$ weighted\\nStieltjes transforms of these orthogonal polynomials in $\\\\mathrm{O}(k)$\\ncomplexity using a numerical Riemann--Hilbert approach. For a special class of\\northogonal polynomials, the Akhiezer polynomials, the method can be sped up\\nsignificantly, with the greatest speedup occurring in the two interval case\\nwhere important formulae of Akhiezer are employed and the Riemann--Hilbert\\napproach is bypassed.\",\"PeriodicalId\":501061,\"journal\":{\"name\":\"arXiv - CS - Numerical Analysis\",\"volume\":\" 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.02384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.02384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们发展了Akhiezer迭代,这是经典chebyshev迭代的推广,用于在多个不相交区间上支持测度的正交多项式的不确定线性系统的无内积迭代解。迭代适用于移位的线性解,然后可以用于有效的矩阵函数逼近。利用正交多项式的渐近性,给出了误差界。该方法效率的一个关键组成部分是能够使用数值黎曼-希尔伯特方法计算$\ mathm {O}(k)$复杂度中的这些正交多项式的前$k$递归系数和前$k$ weightedStieltjes变换。对于一类特殊的正交多项式,即Akhiezer多项式,该方法可以显著地加速,其中最大的加速发生在两个区间情况下,即使用Akhiezer的重要公式,并绕过Riemann- Hilbertapproach。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Akhiezer iteration
We develop the Akhiezer iteration, a generalization of the classical Chebyshev iteration, for the inner product-free, iterative solution of indefinite linear systems using orthogonal polynomials for measures supported on multiple, disjoint intervals. The iteration applies to shifted linear solves and can then be used for efficient matrix function approximation. Using the asymptotics of orthogonal polynomials, error bounds are provided. A key component in the efficiency of the method is the ability to compute the first $k$ orthogonal polynomial recurrence coefficients and the first $k$ weighted Stieltjes transforms of these orthogonal polynomials in $\mathrm{O}(k)$ complexity using a numerical Riemann--Hilbert approach. For a special class of orthogonal polynomials, the Akhiezer polynomials, the method can be sped up significantly, with the greatest speedup occurring in the two interval case where important formulae of Akhiezer are employed and the Riemann--Hilbert approach is bypassed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信