流形的模型约简:一个微分几何框架

Patrick Buchfink, Silke Glas, Bernard Haasdonk, Benjamin Unger
{"title":"流形的模型约简:一个微分几何框架","authors":"Patrick Buchfink, Silke Glas, Bernard Haasdonk, Benjamin Unger","doi":"arxiv-2312.01963","DOIUrl":null,"url":null,"abstract":"Using nonlinear projections and preserving structure in model order reduction\n(MOR) are currently active research fields. In this paper, we provide a novel\ndifferential geometric framework for model reduction on smooth manifolds, which\nemphasizes the geometric nature of the objects involved. The crucial ingredient\nis the construction of an embedding for the low-dimensional submanifold and a\ncompatible reduction map, for which we discuss several options. Our general\nframework allows capturing and generalizing several existing MOR techniques,\nsuch as structure preservation for Lagrangian- or Hamiltonian dynamics, and\nusing nonlinear projections that are, for instance, relevant in\ntransport-dominated problems. The joint abstraction can be used to derive\nshared theoretical properties for different methods, such as an exact\nreproduction result. To connect our framework to existing work in the field, we\ndemonstrate that various techniques for data-driven construction of nonlinear\nprojections can be included in our framework.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":" 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model Reduction on Manifolds: A differential geometric framework\",\"authors\":\"Patrick Buchfink, Silke Glas, Bernard Haasdonk, Benjamin Unger\",\"doi\":\"arxiv-2312.01963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using nonlinear projections and preserving structure in model order reduction\\n(MOR) are currently active research fields. In this paper, we provide a novel\\ndifferential geometric framework for model reduction on smooth manifolds, which\\nemphasizes the geometric nature of the objects involved. The crucial ingredient\\nis the construction of an embedding for the low-dimensional submanifold and a\\ncompatible reduction map, for which we discuss several options. Our general\\nframework allows capturing and generalizing several existing MOR techniques,\\nsuch as structure preservation for Lagrangian- or Hamiltonian dynamics, and\\nusing nonlinear projections that are, for instance, relevant in\\ntransport-dominated problems. The joint abstraction can be used to derive\\nshared theoretical properties for different methods, such as an exact\\nreproduction result. To connect our framework to existing work in the field, we\\ndemonstrate that various techniques for data-driven construction of nonlinear\\nprojections can be included in our framework.\",\"PeriodicalId\":501061,\"journal\":{\"name\":\"arXiv - CS - Numerical Analysis\",\"volume\":\" 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.01963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.01963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在模型降阶(MOR)中使用非线性投影和保持结构是目前研究的热点。在本文中,我们为光滑流形上的模型约简提供了一个新的微分几何框架,它强调了所涉及对象的几何性质。其中的关键成分是低维子流形和兼容约简映射的嵌入构造,对此我们讨论了几个选项。我们的通用框架允许捕获和推广几种现有的MOR技术,例如拉格朗日或哈密顿动力学的结构保存,以及使用非线性投影,例如,与运输主导问题相关的非线性投影。联合抽象可以用来为不同的方法导出共享的理论性质,例如精确的生成结果。为了将我们的框架与该领域的现有工作联系起来,我们证明了用于非线性投影的数据驱动构造的各种技术可以包含在我们的框架中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model Reduction on Manifolds: A differential geometric framework
Using nonlinear projections and preserving structure in model order reduction (MOR) are currently active research fields. In this paper, we provide a novel differential geometric framework for model reduction on smooth manifolds, which emphasizes the geometric nature of the objects involved. The crucial ingredient is the construction of an embedding for the low-dimensional submanifold and a compatible reduction map, for which we discuss several options. Our general framework allows capturing and generalizing several existing MOR techniques, such as structure preservation for Lagrangian- or Hamiltonian dynamics, and using nonlinear projections that are, for instance, relevant in transport-dominated problems. The joint abstraction can be used to derive shared theoretical properties for different methods, such as an exact reproduction result. To connect our framework to existing work in the field, we demonstrate that various techniques for data-driven construction of nonlinear projections can be included in our framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信