基于改进Patankar—Runge—Kutta方法的贝叶斯优化设计时间步长控制器

Thomas Izgin, Hendrik Ranocha
{"title":"基于改进Patankar—Runge—Kutta方法的贝叶斯优化设计时间步长控制器","authors":"Thomas Izgin, Hendrik Ranocha","doi":"arxiv-2312.01796","DOIUrl":null,"url":null,"abstract":"Modified Patankar--Runge--Kutta (MPRK) methods are linearly implicit time\nintegration schemes developed to preserve positivity and a linear invariant\nsuch as the total mass in chemical reactions. MPRK methods are naturally\nequipped with embedded schemes yielding a local error estimate similar to\nRunge--Kutta pairs. To design good time step size controllers using these error\nestimates, we propose to use Bayesian optimization. In particular, we design a\nnovel objective function that captures important properties such as tolerance\nconvergence and computational stability. We apply our new approach to several\nMPRK schemes and controllers based on digital signal processing, extending\nclassical PI and PID controllers. We demonstrate that the optimization process\nyields controllers that are at least as good as the best controllers chosen\nfrom a wide range of suggestions available for classical explicit and implicit\ntime integration methods.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":" 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Bayesian Optimization to Design Time Step Size Controllers with Application to Modified Patankar--Runge--Kutta Methods\",\"authors\":\"Thomas Izgin, Hendrik Ranocha\",\"doi\":\"arxiv-2312.01796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modified Patankar--Runge--Kutta (MPRK) methods are linearly implicit time\\nintegration schemes developed to preserve positivity and a linear invariant\\nsuch as the total mass in chemical reactions. MPRK methods are naturally\\nequipped with embedded schemes yielding a local error estimate similar to\\nRunge--Kutta pairs. To design good time step size controllers using these error\\nestimates, we propose to use Bayesian optimization. In particular, we design a\\nnovel objective function that captures important properties such as tolerance\\nconvergence and computational stability. We apply our new approach to several\\nMPRK schemes and controllers based on digital signal processing, extending\\nclassical PI and PID controllers. We demonstrate that the optimization process\\nyields controllers that are at least as good as the best controllers chosen\\nfrom a wide range of suggestions available for classical explicit and implicit\\ntime integration methods.\",\"PeriodicalId\":501061,\"journal\":{\"name\":\"arXiv - CS - Numerical Analysis\",\"volume\":\" 14\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.01796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.01796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

改进的Patankar- Runge- Kutta (MPRK)方法是一种线性隐式时间积分方案,旨在保持化学反应中的正性和线性不变量(如总质量)。MPRK方法自然地配备了嵌入式方案,产生类似于runge -Kutta对的局部误差估计。为了利用这些误差估计来设计好的时间步长控制器,我们建议使用贝叶斯优化。特别是,我们设计了一个新的目标函数,它捕获了诸如容差收敛和计算稳定性等重要特性。我们将这种新方法应用于几种基于数字信号处理的mprk方案和控制器,扩展了经典的PI和PID控制器。我们证明,优化过程产生的控制器至少与从经典显式和隐式时间积分方法的广泛建议中选择的最佳控制器一样好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Bayesian Optimization to Design Time Step Size Controllers with Application to Modified Patankar--Runge--Kutta Methods
Modified Patankar--Runge--Kutta (MPRK) methods are linearly implicit time integration schemes developed to preserve positivity and a linear invariant such as the total mass in chemical reactions. MPRK methods are naturally equipped with embedded schemes yielding a local error estimate similar to Runge--Kutta pairs. To design good time step size controllers using these error estimates, we propose to use Bayesian optimization. In particular, we design a novel objective function that captures important properties such as tolerance convergence and computational stability. We apply our new approach to several MPRK schemes and controllers based on digital signal processing, extending classical PI and PID controllers. We demonstrate that the optimization process yields controllers that are at least as good as the best controllers chosen from a wide range of suggestions available for classical explicit and implicit time integration methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信